Doping heteroatom, an effective way to enhance the electrochemical performances of graphene, has received wide attention, especially related to nitrogen. Alternating voltage electrochemical exfoliation, as a low cost and green electrochemical approach, has been developed to construct N-doped graphene (N-Gh) material. The N-Gh presents a much higher capacity than that of pure graphene prepared via the same method, which might be attributed to the introduction of nitrogen, which has much more effects and a disordered structure. As-prepared N-Gh exhibits a low O/C ratio that is helpful in maintaining high electrical conductivity. And the effects and disorder structure are also conductive to reduce the overlaps of graphene layers. A symmetric supercapacitor assembled with N-Gh electrodes displays a satisfactory rate behavior and long cycling stability (92.3% retention after 5,000 cycles).

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7287216PMC
http://dx.doi.org/10.3389/fchem.2020.00428DOI Listing

Publication Analysis

Top Keywords

alternating voltage
8
voltage electrochemical
8
electrochemical exfoliation
8
nitrogen-doped graphene
4
graphene alternating
4
electrochemical
4
exfoliation supercapacitor
4
supercapacitor application
4
application doping
4
doping heteroatom
4

Similar Publications

In this study, we explore the photovoltaic performance of an innovative high efficiency heterostructure utilizing the quaternary semiconductor CuFeSnSe (CFTSe). This material features a kesterite symmetrical structure and is distinguished by its non-toxic nature and abundant presence in the earth's crust. Utilizing the SCAPS simulator, we explore various electrical specifications such as short circuit current (J), open circuit voltage (V), the fill factor (FF), and power conversion efficiency (PCE) were explored at a large range of thicknesses, and the acceptor carrier concentration doping (N).

View Article and Find Full Text PDF

Recent progress in biopolymer-based electrospun nanofibers and their potential biomedical applications: A review.

Int J Biol Macromol

January 2025

School of Chemical Engineering, Yeungnam University, 280-Daehak-ro, Gyeongsan 38541, Republic of Korea. Electronic address:

Tissue engineering offers an alternative approach to developing biological substitutes that restore, maintain, or enhance tissue functionality by integrating principles from medicine, biology, and engineering. In this context, biopolymer-based electrospun nanofibers have emerged as attractive platforms due to their superior physicochemical properties, including excellent biocompatibility, non-toxicity, and desirable biodegradability, compared to synthetic polymers. Considerable efforts have been dedicated to developing suitable substitutes for various biomedical applications, with electrospinning receiving considerable attention as a versatile technique for fabricating nanofibrous platforms.

View Article and Find Full Text PDF

Acetonitrile-Based Highly Concentrated Electrolytes for High-Power Organic Sodium-Ion Batteries.

ACS Appl Mater Interfaces

January 2025

Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai, Miyagi 980-8577, Japan.

Sodium croconate, a high-voltage organic cathode material, can be applied to high-energy-density and cost-effective organic sodium-ion batteries (OSIBs) as an alternative to traditional lithium-ion batteries. However, organic molecular cathodes generally dissolve into the electrolyte, leading to poor cyclability. Thus, an electrolyte that can address the present limitations and further facilitate the fabrication of highly reversible OSIBs must be developed.

View Article and Find Full Text PDF

The increasing concern about global warming and the depletion of fossil fuel reserves has led to a growing interest in alternative energy sources, particularly fuel cells (FCs). These green energy sources convert chemical energy into electrical energy, offering advantages such as quick initiation, high power density, and efficient operation at low temperatures. However, the performance of FCs is influenced by changes in operating temperature, and optimal efficiency is achieved by operating them at their maximum power point (MPP).

View Article and Find Full Text PDF

Piezoelectric materials are increasingly used in portable smart electronics and Internet of Things sensors. Among them, piezoelectric macro fiber composites (MFCs) have attracted much attention due to their architectural simplicity, scalability, and high-power density. However, most MFCs currently use toxic lead-based piezoelectric materials, hindering their applications for bio-friendly intelligent electronics.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!