Chronic pain prevalence is high worldwide and increases at older ages. Signs of premature aging have been associated with chronic pain, but few studies have investigated aging biomarkers in pain-related conditions. A set of DNA methylation (DNAm)-based estimates of age, called "epigenetic clocks," has been proposed as biological measures of age-related adverse processes, morbidity, and mortality. The aim of this study is to assess if different pain-related phenotypes show alterations in DNAm age. In our analysis, we considered three cohorts for which whole-blood DNAm data were available: heat pain sensitivity (HPS), including 20 monozygotic twin pairs discordant for heat pain temperature threshold; fibromyalgia (FM), including 24 cases and 20 controls; and headache, including 22 chronic migraine and medication overuse headache patients (MOH), 18 episodic migraineurs (EM), and 13 healthy subjects. We used the Horvath's epigenetic age calculator to obtain DNAm-based estimates of epigenetic age, telomere length, levels of 7 proteins in plasma, number of smoked packs of cigarettes per year, and blood cell counts. We did not find differences in epigenetic age acceleration, calculated using five different epigenetic clocks, between subjects discordant for pain-related phenotypes. Twins with high HPS had increased CD8+ T cell counts (nominal = 0.028). HPS thresholds were negatively associated with estimated levels of GDF15 (nominal = 0.008). FM patients showed decreased naive CD4+ T cell counts compared with controls (nominal = 0.015). The severity of FM manifestations expressed through various evaluation tests was associated with decreased levels of leptin, shorter length of telomeres, and reduced CD8+ T and natural killer cell counts (nominal < 0.05), while the duration of painful symptoms was positively associated with telomere length (nominal = 0.034). No differences in DNAm-based estimates were detected for MOH or EM compared with controls. In summary, our study suggests that HPS, FM, and MOH/EM do not show signs of epigenetic age acceleration in whole blood, while HPS and FM are associated with DNAm-based estimates of immunological parameters, plasma proteins, and telomere length. Future studies should extend these observations in larger cohorts.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7296181PMC
http://dx.doi.org/10.3389/fpubh.2020.00172DOI Listing

Publication Analysis

Top Keywords

epigenetic age
20
dnam-based estimates
16
cell counts
16
telomere length
12
pain-related conditions
8
chronic pain
8
pain-related phenotypes
8
heat pain
8
age acceleration
8
counts nominal
8

Similar Publications

Background: Alzheimer's disease (AD) is the most common cause of age-related dementia, and the presence of amyloid-β (Aβ) plaques and tau-containing neurofibrillary tangles is associated with the neurodegeneration and cognitive impairment in this incurable disease. Growing evidence shows that epigenetic dysregulation through histone deacetylases (HDACs) plays a critical role in synaptic dysfunction and memory loss in AD, and HDACs have been highlighted as a novel class of anti-Alzheimer targets. Moreover, restoring Wnt/β-catenin signaling, which is greatly suppressed in AD brains, is a promising therapeutic strategy for AD.

View Article and Find Full Text PDF

Objective: To establish a new technique to easily identify the fetal cervix-uterus complex in normal female fetuses from 20 to 40 weeks of gestation.

Material And Methods: The study was performed in routine examination in normal fetuses by two observers. Twenty-five consecutive cases per gestational week were assessed between 20 and 40 weeks.

View Article and Find Full Text PDF

Numerous diseases have been connected to protein arginine methylations mediated by protein arginine methyltransferase 5 (PRMT5). Clinical investigations of the PRMT5-specific inhibitor GSK3326595 are currently being conducted, and the results are promising for preventing cancers. However, the detailed mechanism of PRMT5 promoting colorectal cancer (CRC) malignant progression remains unclear.

View Article and Find Full Text PDF

Cross-tissue comparison of epigenetic aging clocks in humans.

Aging Cell

January 2025

Department of Biobehavioral Health, Penn State University, University Park, Pennsylvania, USA.

Epigenetic clocks are a common group of tools used to measure biological aging-the progressive deterioration of cells, tissues, and organs. Epigenetic clocks have been trained almost exclusively using blood-based tissues, but there is growing interest in estimating epigenetic age using less-invasive oral-based tissues (i.e.

View Article and Find Full Text PDF

[Paternal inheritance mediated by epigenetic changes in sperms].

Zhonghua Yi Xue Yi Chuan Xue Za Zhi

January 2025

Institute of Reproductive and Stem Cell Engineering, School of Basic Medical Sciences, Central South University, Changsha, Hunan 410078, China.

Epigenetics is the link between the genome and environment, which can respond to physiological (such as age) or environmental factors (such as diet, stress, and pollution) and induce changes in epigenetic modifications (such as DNA methylation, non-coding RNA, and histone modifications). It can also serve as cellular memory transmitted from generation to generation. Sperm is highly responsive to such environmental changes and has unique epigenetic profiles.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!