Background: Root system architecture and especially its plasticity in acclimation to variable environments play a crucial role in the ability of plants to explore and acquire efficiently soil resources and ensure plant productivity. Non-destructive measurement methods are indispensable to quantify dynamic growth traits. For closing the phenotyping gap, we have developed an automated phenotyping platform, -, for non-destructive characterization of root and shoot traits of plants grown in transparent agar medium.

Results: The phenotyping system is capable to phenotype root systems and correlate them to whole plant development of up to 280 plants within 15 min. The potential of the platform has been demonstrated by quantifying phenotypic differences within 78 accessions from the 1001 genomes project. The chosen concept 'plant-to-sensor' is based on transporting plants to the imaging position, which allows for flexible experimental size and design. As transporting causes mechanical vibrations of plants, we have validated that daily imaging, and consequently, moving plants has negligible influence on plant development. Plants are cultivated in square Petri dishes modified to allow the shoot to grow in the ambient air while the roots grow inside the Petri dish filled with agar. Because it is common practice in the scientific community to grow plants completely enclosed in Petri dishes, we compared development of plants that had the shoot inside with that of plants that had the shoot outside the plate. Roots of plants grown completely inside the Petri dish grew 58% slower, produced a 1.8 times higher lateral root density and showed an etiolated shoot whereas plants whose shoot grew outside the plate formed a rosette. In addition, the setup with the shoot growing outside the plate offers the unique option to accurately measure both, leaf and root traits, non-destructively, and treat roots and shoots separately.

Conclusions: Because the - system can be moved from one growth chamber to another, plants can be phenotyped under a wide range of environmental conditions including future climate scenarios. In combination with a measurement throughput enabling phenotyping a large set of mutants or accessions, the platform will contribute to the identification of key genes.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7310412PMC
http://dx.doi.org/10.1186/s13007-020-00631-3DOI Listing

Publication Analysis

Top Keywords

plants
14
plants shoot
12
shoot
8
root shoot
8
growth traits
8
plants grown
8
plant development
8
development plants
8
petri dishes
8
inside petri
8

Similar Publications

The textile industry is one of the main industries that benefited from the industrial revolution. Therefore, discharging of dyes from textile, paper, plastic, and rubber industries is inevitable. This colored wastewater prevents sunlight penetration and highly affects water sources.

View Article and Find Full Text PDF

Background: The 2019 Canada's Food Guide provides universal recommendations to individuals aged ≥2 years. However, the extent to which these recommendations are appropriate for older adults is unknown. Although ideal, conducting a large randomized controlled trial is unrealistic in the short term.

View Article and Find Full Text PDF

In an era of interdisciplinary scientific research, new methodologies are necessary to simultaneously advance several fields of study. One such case involves the measurement of electron spin effects on biological systems. While magnetic effects are well known in biology, recent years have shown a surge in published evidence isolating the dependence on spin, rather than magnetic field, in biological contexts.

View Article and Find Full Text PDF

Molecular glue for phycobilisome attachment to photosystem II in sp. PCC 7002.

Proc Natl Acad Sci U S A

January 2025

State Key Laboratory of Protein and Plant Genetic Engineering, School of Life Science, Peking University, Beijing 100871, People's Republic of China.

Phycobilisomes (PBS) are the major photosynthetic light-harvesting complexes in cyanobacteria and red algae. While the structures of PBS have been determined in atomic resolutions, how PBS are attached to the reaction centers of photosystems remains less clear. Here, we report that a linker protein (LcpA) is required for the attachment of PBS to photosystem II (PSII) in the cyanobacterium sp.

View Article and Find Full Text PDF

Light signal regulates endoreduplication and tomato fruit expansion through the SlPIF1a-SlTLFP8-SlCDKB2 module.

Proc Natl Acad Sci U S A

January 2025

Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, College of Horticulture, China Agricultural University, Beijing 100193, China.

Light serves as an energy source for cell division and expansion during fruit development. Cell expansion significantly influences fruit size and is closely linked to endoreduplication, a unique cell cycle variation characterized by DNA replication without cytokinesis. Paradoxically, under conditions of ample photosynthates, light signaling suppresses cell expansion.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!