Visceral leishmaniasis (VL)-related mortality and morbidity imposes a great deal of health concern across the globe. The existing anti-leishmanial drug regimen generally fails to eliminate newly emerging resistant isolates of this dreadful parasite. In such circumstances, the development of a prophylactic strategy to impart protection against the disease is likely to take center stage. In order to develop a promising prophylactic vaccine, it is desirable to identify an adequately potential vaccine candidate. analysis of tubulin folding cofactor D protein predicted its potential to activate both B- and T-cell repertoires. Furthermore, the ELISA employing anti-peptide (a segment of tubulin folding cofactor D) antibody revealed its proficiency in VL diagnosis and treatment monitoring. The peptide and its cocktail with another peptide (peptide) prompted the up-regulation of pro-inflammatory cytokines, such as IFN-γ, TNF-α, IL-2, IL-17, ., and the down-regulation of immune-regulatory cytokines, such as IL-10, in the immunized BALB/c mice. Coherent to the consequence of peptide-specific humoral immune response, peptide cocktail-based immunization ensued in the predominant amplification of pathogen-specific IgG2a over the IgG1 isotype, up-regulated proliferation of T lymphocytes, and enhanced production of nitric oxide, reactive oxygen species, . We also established that the peptide cocktail modulated host MAPK signaling to favor the amplification of Th-dominated immune response in the host. The peptide cocktail mediated the activation of the host immune armory, which was eventually translated into a significant decline in parasitic load in the visceral organs of experimental animals challenged with .

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7280453PMC
http://dx.doi.org/10.3389/fimmu.2020.00817DOI Listing

Publication Analysis

Top Keywords

tubulin folding
12
folding cofactor
12
peptide cocktail
12
mapk signaling
8
immune response
8
peptide
6
-specific promiscuous
4
promiscuous membrane
4
membrane protein
4
protein tubulin
4

Similar Publications

Identification and subcellular localization of the chaperonin NbCCTβ in Nosema bombycis.

Gene

January 2025

College of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang 212100 China; Sericulture Research Institute, Chinese Academy of Agricultural Sciences, Zhenjiang 212100 China. Electronic address:

Nosema bombycis, the causative agent of pebrine disease, poses a significant threat to the silkworm industry due to its negative impact on silkworm health and productivity. The chaperonin-containing tailless complex polypeptide (CCT) plays a crucial role in protein folding, and its β subunit (CCTβ) is essential for the proper folding of cytoskeletal proteins, such as actin and tubulin. In this study, we cloned and expressed the NbCCTβ gene from N.

View Article and Find Full Text PDF

In the current study, a novel series of 1,2,4-oxadiazoles were designed, synthesized, and evaluated for their biological activities. A cell-based antiproliferative screening was accomplished on the newly synthesized 1,2,4-oxadiazoles along with our previously reported aryl(alkyl)azoles (AAAs) containing middle heterocyclic cores thiazole and oxazole. Among the tested compounds, naphthyl- thiazoles demonstrated higher antiproliferative activity and B3 was identified as the most potent compound with IC values in the range of 2.

View Article and Find Full Text PDF

Glucose-regulated protein 78 regulates the subunit-folding of the CCT complex by modulating gene expression and protein interaction in the microsporidian Nosema bombycis.

Int J Biol Macromol

December 2024

Jiangsu University of Science and Technology, Zhenjiang, People's Republic of China; Sericulture Research Institute, Chinese Academy of Agricultural Sciences, Zhenjiang, People's Republic of China. Electronic address:

Chaperonin containing tailless complex polypeptide 1 (CCT) functions as a molecular chaperone and is essential for ensuring proper protein folding. Glucose-regulated protein 78 (GRP78/Bip), also a type of chaperone, not only assists in folding of proteins, but also facilitates the transportation of proteins into the endoplasmic reticulum (ER) via the Sec protein complex. In this study, we identified the CCTη of N.

View Article and Find Full Text PDF

Context: Pathogenic variants in the TBCE gene, encoding tubulin-specific chaperone E crucial for tubulin folding, are linked to three severe neurodevelopmental disorders: Hypoparathyroidism-retardation-dysmorphism (HRD) syndrome, Kenny-Caffey syndrome type 1, and progressive encephalopathy with amyotrophy and optic atrophy.

Objective: We identified patients with a novel, milder TBCE-associated phenotype and aimed to characterize it at the clinical and molecular levels.

Materials And Methods: We conducted splicing analysis using deep NGS sequencing of RT-PCR products and detected TBCE through Western blotting.

View Article and Find Full Text PDF

Visualizing nucleation, condensation and propagation of β-tubulin folding in chaperonin TRiC.

bioRxiv

October 2024

Department of Bioengineering, James Clark Center, Stanford University, Palo Alto, CA, 94305, USA.

The folding nucleus (FN) initiates protein folding and enables an efficient folding pathway. Here we directly visualize the tubulin FN consisting of a nonnative, partially assembled Rossmann fold, in the closed chamber of human chaperonin TRiC. Chaperonin TRiC interacts with non-natively folded secondary structural elements, stabilizing the nucleus for transition into its first native domain.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!