The Naphthalene Catabolic Genes of BS3701: Additional Regulatory Control.

Front Microbiol

Laboratory of Molecular Microbiology, Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences, Federal Research Center, G.K. Skryabin Institute of Biochemistry and Physiology of Microorganisms, Pushchino, Russia.

Published: June 2020

microorganisms are used for bioremediation of soils contaminated with petroleum hydrocarbons. The overall remediation efficiency is largely dependent on the presence of macro- and micronutrients. Widely varying concentrations of available nitrogen and iron (Fe) in soils were shown to affect residual hydrocarbons in the course of biodegradation. The regulatory mechanisms of expression of hydrocarbon catabolic genes in low nitrogen/low iron conditions remain unclear. The catabolism of naphthalene, a two-ring polycyclic aromatic hydrocarbon, has been well studied in pseudomonads in terms of the involvement of specific transcriptional activators, thus making it useful in revealing additional regulatory control of the adaptation of hydrocarbon destructors to a low level of the essential nutrients. The strain BS3701 is a component of the "MicroBak" preparation for soil remediation. Previously, this strain was shown to contain genes encoding the key enzymes for naphthalene catabolism: naphthalene 1,2-dioxygenase, salicylate hydroxylase, catechol 2,3-dioxygenase, and catechol 1,2-dioxygenase. Our study aimed to clarify whether the naphthalene catabolic gene expression is dependent on the amount of nitrogen and iron in the growth culture medium, and if so, at exactly which stages the expression is regulated. We cultivated the strain in low nitrogen/low iron conditions with the concurrent evaluation of the activity of the key enzymes and the mRNA level of genes encoding these enzymes. We are the first to report that naphthalene catabolic genes are subject not only to transcriptional but also post-transcriptional regulation.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7291925PMC
http://dx.doi.org/10.3389/fmicb.2020.01217DOI Listing

Publication Analysis

Top Keywords

naphthalene catabolic
12
catabolic genes
12
additional regulatory
8
regulatory control
8
nitrogen iron
8
low nitrogen/low
8
nitrogen/low iron
8
iron conditions
8
catabolism naphthalene
8
genes encoding
8

Similar Publications

Background/objectives: The extracellular calcium-sensing receptor (CaSR) is a multifunctional receptor proposed as a possible drug target for inflammatory bowel disease. We showed previously that CaSR inhibition with NPS 2143, a negative allosteric modulator of the CaSR, somewhat ameliorated the symptoms of chemically induced severe colitis in mice. However, it was unclear whether the potential of CaSR inhibition to reduce colitis may have been overshadowed by the severity of the induced inflammation in our previous study.

View Article and Find Full Text PDF

The present study investigates the influence of nitrosamines and etoposide on mesenchymal stromal cells (MSCs) in a differentiation state- and biological age-dependent manner. The genotoxic effects of the agents on both neonatal and adult stem cell populations after treatment, before, or during the course of differentiation, and the sensitivity of the different MSC types to different concentrations of MNU or etoposide were assessed. Hereby, the multipotent differentiation capacity of MSCs into osteoblasts, adipocytes, and chondrocytes was analyzed.

View Article and Find Full Text PDF

Secondary hyperparathyroidism (sHPT) is a significant clinical complication of CKD leading to bone abnormalities and cardiovascular disease. Current treatment based on activating the parathyroid calcium-sensing receptor (CaSR) using calcimimetics such as Cinacalcet, aims to decrease plasma PTH levels and inhibit the progression of parathyroid hyperplasia. In the present study, we found significant diurnal rhythmicity of Casr, encoding the Cinacalcet drug target in hyperplastic parathyroid glands (p = 0.

View Article and Find Full Text PDF

A one-pot, acid-, base-, and metal-free, multicomponent strategy has been developed to synthesize spiro thiochromene-oxindole derivatives as potential anti-inflammatory agents. The synthesized compounds were screened for their anti-inflammatory activity by inhibiting heat-induced Bovine Serum Albumin (BSA) denaturation assay, revealing moderate to good efficacy. Compounds 4e, 4k, and 4h exhibited the highest activity, inhibiting BSA denaturation by 90.

View Article and Find Full Text PDF

Anlotinib in combination with metronomic chemotherapy in HER2-negative metastatic breast cancer: an observational and retrospective study.

BMC Cancer

January 2025

Department of Medical Oncology, National Cancer Center, National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, No.17 PanjiayuanNanli, Chaoyang District, Beijing, 100021, China.

Anti-angiogenesis offers an important treatment strategy for metastatic breast cancer (MBC). Metronomic chemotherapy (MCT) provides antiangiogenic effects without increased toxicities, making it good partner for antiangiogenic therapy. We conducted the present retrospective study to evaluate the efficacy and safety of anlotinib plus MCT for HER2 negative MBC.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!