Sustained climate warming increases the frequency and strength of soil freeze-thaw (FT) events, which strongly affect the properties of soil microbial communities. To explore the responses and mechanisms of the frequency and strength of freeze-thaw events on soil microbial communities, a lab-scale FT test was conducted on forest soil in permafrost region from the Daxing'an Mountains, China. The number of FT cycles (FTN) had a greater effect on microbial communities than FT temperature fluctuation (FTF). The FTN and FTF explained 20.9 and 10.8% of the variation in microbial community structure, respectively, and 22.9 and 11.6% of the variation in enzyme activities, respectively. The total and subgroup microbial biomass, the ratio of fungi to bacteria (F/B), and C- and N-hydrolyzing enzyme activities all decreased with an increase in FTN. Among microbial groups, arbuscular mycorrhizal fungi (AMF) were the most sensitive to FT events. Based on the changes of F/B and AMF, the reduction in soil carbon sequestration caused by frequent FT events can be explained from a perspective of microorganisms. Based on redundancy analysis and Mental Test, soil moisture, total organic carbon, and total nitrogen were the major factors affecting microorganisms in FT events. In the forest ecosystem, soil water and fertilizer were important factors to resist the damage of FT to microorganism, and sufficient water and fertilizer can lighten the damage of FT events to microorganisms. As a result of this study, the understanding of the responses of soil microorganisms to the variation in FT patterns caused by climate changes has increased, which will lead to better predictions of the effects of likely climate change on soil microorganisms.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7283528 | PMC |
http://dx.doi.org/10.3389/fmicb.2020.01164 | DOI Listing |
J Environ Manage
December 2024
Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing, 400045, China; Department of Ecological Sciences and Engineering, Chongqing University, Chongqing, 400045, China. Electronic address:
In wetlands, hydrological conditions drive plant community distribution, forming vegetation zones with plant species and material cycling. This mediates nitrogen migration and NO emissions within wetlands. Five vegetation zones in a large wetland were studied during flooding and drought periods.
View Article and Find Full Text PDFJ Hazard Mater
December 2024
Guangdong Laboratory for Lingnan Modern Agriculture, Guangdong Provincial Key Laboratory of Agricultural & Rural Pollution Abatement and Environmental Safety, College of Natural Resources and Environment, South China Agricultural University, Guangzhou 510642, China. Electronic address:
Naturally aged microplastics (NAMPs) are commonly found in farmland soils contaminated with heavy metals (HMs), such as arsenic (As) and cadmium (Cd); yet their combined effects on soil-plant ecosystems remain poorly understood. In this study, we investigated the toxic effects of NAMPs and As-Cd on lettuce, considering the influence of earthworm activity, and examined changes in As-Cd bioavailability in the rhizosphere. Four experimental systems were established: soil-only, soil-lettuce, soil-earthworms, and soil-lettuce-earthworms systems, with four NAMPs concentrations (0, 0.
View Article and Find Full Text PDFCurr Microbiol
December 2024
Department of Biological Science, College of Science and Engineering, Sangji University, Wonju, 26339, Republic of Korea.
During the study of microbial diversity of forest soil in the Republic of Korea, a yellow pigment-producing, Gram-stain-negative, rod-shaped, motile bacterium was isolated and designated as strain 1W2. This strain grew at temperature of 10-37 °C, at pH of 5.0-9.
View Article and Find Full Text PDFBMC Microbiol
December 2024
School of Environment and Resource, Xichang University, Xichang, 615000, China.
The extensive mining of bastnasite (CeFCO) has caused pollution of lanthanum (La), cerium (Ce), and fuorine (F) in the surrounding farmland soil, severely threatening the safety of the soil ecosystem. However, the interaction effects of various chemical fractions of La, Ce, and F on the composition of microbial communities are unclear. In our study, high-throughput sequencing was performed based on the pot experiments of four types of combined pollution soils, i.
View Article and Find Full Text PDFEnviron Sci Pollut Res Int
December 2024
Unité de Chimie Environnementale Et Interactions Sur Le Vivant (UCEIV), Université du Littoral Côte d'Opale (ULCO), 50 Rue Ferdinand Buisson, Calais Cedex, UR4492, France.
Phytoremediation is recognized as an environmentally, economically and socially efficient phytotechnology for the reclamation of polluted soils. To improve its efficiency, several strategies can be used including the optimization of agronomic practices, selection of high-performance plant species but also the application of amendments. Despite evidences of the benefits provided by different types of amendments on pollution control through several phytoremediation pathways, their contribution to other soil ecosystem functions supporting different ecosystem services remains sparsely documented.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!