An important function of aromatase in the brain is conversion of testosterone secreted from the testis into estradiol. Estradiol produced in the brain is thought to be deeply involved in the formation of sexually dimorphic nuclei and sexual behavior as a neurosteroid. We analyzed the brain-specific promoter to elucidate the control mechanisms of brain aromatase expression that may be highly involved in sexual differentiation of the brain. The 202-bp upstream region of the brain-specific exon 1 has three types of -acting elements, aro-AI, AII, and B. We isolated ARP-1 as an aro-AII-binding protein by yeast one-hybrid screening from a cDNA library of mouse fetal brains. ARP-1 is a member of the nuclear receptor superfamily and functions as an orphan-type transcription factor. ARP-1 protein synthesized showed the same binding property to the aro-AII site as nuclear extract from fetal brains. To determine how the promoter is involved in brain-specific transcription of the aromatase gene, we first detected the occupancy of the aro-AII site by ARP-1 using chromatin immunoprecipitation assays. Diencephalic regions of fetal brains at embryonic day 16 were analyzed, which revealed ARP-1 recruitment to the aro-AII site. To analyze the effects of ARP-1 on transcriptional regulation of the brain-specific aromatase promoter, a luciferase reporter plasmid driven by the brain-specific promoter was transfected into CV-1 cells together with a plasmid expressing ARP-1 protein. These analyses revealed that ARP-1 induced promoter activity in a dose-dependent manner. Furthermore, to determine whether ARP-1 is required for aromatase expression in neurons, ARP-1 knockdown was conducted in neuronal cell primary culture. Knockdown of ARP-1 significantly suppressed the increase in aromatase mRNA observed in cultured neurons. These results indicate that ARP-1 is involved in the transcriptional regulation of the brain-specific promoter of the aromatase gene.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7283458 | PMC |
http://dx.doi.org/10.3389/fendo.2020.00306 | DOI Listing |
ACS Omega
August 2024
Faculty of Health Science, University of Ss. Cyril and Methodius, Trnava 917 01, Slovakia.
Three neurotransmitters belonging to catecholamines (dopamine, noradrenaline, adrenaline) and related α-amino acids (DOPA and tyrosine) were studied by quantum-chemical and DFT calculations using B3LYP and DLPNO-CCSD(T) methods in water. In addition to the three canonical forms, zwitterionic forms were also investigated, each in three oxidation states (molecular cation L, electroneutral molecule L, and molecular anion L). Each species was subjected to geometry optimization followed by vibrational analysis.
View Article and Find Full Text PDFBioorg Med Chem
September 2024
State Key Laboratory Basis of Xinjiang Indigenous Medicinal Plants Resource Utilization, CAS Laboratory of Chemistry of Plant Resources in Arid Regions, Xinjiang Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Urumqi, Xinjiang, China; State Key Laboratory of Drug Research, Drug Discovery and Design Center, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai 201203, China; School of Pharmacy, University of Chinese Academy of Sciences, No.19A Yuquan Road, Beijing 100049, China. Electronic address:
This study reported the design and synthesis of novel 1-amido-2-one-4-thio-deoxypyranose as inhibitors of potential drug target TRIP13 for developing new mechanism-based therapeutic agents in the treatment of multiple myeloma (MM). In comparison with the positive control DCZ0415, the most active compounds C16, C18, C20 and C32 exhibited strong anti-proliferative activity against human MM cell lines (ARP-1 and NCI-H929) with IC values of 1 ∼ 2 μM. While the surface plasmon resonance (SPR) and ATPase activity assays demonstrated that the representative compound C20 is a potent inhibitor of TRIP13, C20 also showed good antitumor activity in vivo on BALB/c nude mice xenografted with MM tumor cells.
View Article and Find Full Text PDFInt J Biol Macromol
August 2024
State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan 611137, China. Electronic address:
Amauroderma rugosum (AR) is commonly recognized as a medicinal fungus, often used as an alternative to Ganoderma lucidum. There is a scarcity of comprehensive and in-depth research on its bioactive polysaccharides and their associated biological activities. Herein, we isolated the polysaccharide fractions extracted from AR (ARPs) and investigated their primary structure and anti-angiogenic activities, given that various diseases are associated with excessive angiogenesis.
View Article and Find Full Text PDFHeliyon
June 2024
School of Science, Parramatta Campus, Western Sydney University, Locked Bag 1797, Penrith, NSW, 2751, Australia.
(Blume and T. Nees) Torrend is a traditionally well-known mushroom that is used for the treatment of cancer. In order to evaluate the pharmacological activities of polysaccharides, the mushroom powder was subjected to hot water extraction and pure polysaccharides (ARPs) were isolated by gel-filtration method.
View Article and Find Full Text PDFPharmaceuticals (Basel)
April 2024
Department of Pharmacology & Therapeutics, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain P.O. Box 15551, United Arab Emirates.
Studying the involvement of nicotinic acetylcholine receptors (nAChRs), specifically α7-nAChRs, in neuropsychiatric brain disorders such as autism spectrum disorder (ASD) has gained a growing interest. The flavonoid apigenin (APG) has been confirmed in its pharmacological action as a positive allosteric modulator of α7-nAChRs. However, there is no research describing the pharmacological potential of APG in ASD.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!