Introduction: Bufalin is a component of Chinese traditional medicine, Chansu, which is reported to induce cell death among various kinds of tumors. Apoptosis evasion is a common problem of cancer treatment.
Materials And Methods: The proliferation of U-87 and U-373 treated by bufalin combined with or without apoptosis inhibitor was detected by MTT assay. The protein levels related to apoptosis and necroptosis were measured by Western blotting. Immunoprecipitation (IP) was applied for monitoring the formation of necrosome. The gene knockdown by CRISPR/Cas9 was applied to determine the roles of the proteins in apoptosis and necroptosis.
Results: In this study, we found that bufalin could induce apoptosis or necroptosis when U-87 and U-373 escaped from apoptosis. Bufalin triggered cell death by upregulating tumor necrosis factor (TNF) -α, TNF receptor 1 (TNFR1) and receptor-interacting protein 1 (RIPK1). Antagonizing cellular inhibitor of apoptosis 1 (cIAP1) and cIAP2 were also contributory. Caspase-8 activation led to apoptosis. When caspase-8 was functionally lost, necrosome consisted of RIPK1, receptor-interacting protein 3 (RIPK3) and mixed lineage kinase domain-like protein (MLKL) formed and necroptosis happened. The knockdown of above genes or the drug treatment confirmed the mechanism of bufalin-induced cell death. Cytotoxicity of bufalin to caspase-8 knockdown cell lines made control cell lines more sensitive to bufalin in their mixture.
Discussion: The cytotoxicity of bufalin to U-87 and U-373 was by inducing apoptosis or necroptosis when they were sensitive to apoptosis or not. The results indicated that seeking for treatments that could induce apoptosis and necroptosis was a good solution for the tumor evasion of apoptosis.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7274536 | PMC |
http://dx.doi.org/10.2147/OTT.S242567 | DOI Listing |
Viruses
November 2024
Department of Microbiology & Immunology, Stanford Medical School, Stanford University, Stanford, CA 94305, USA.
Cytomegaloviruses, species-specific members of the betaherpesviruses, encode an impressive array of immune evasion strategies committed to the manipulation of the host immune system enabling these viruses to remain for life in a stand-off with host innate and adaptive immune mechanisms. Even though they are species-restricted, cytomegaloviruses are distributed across a wide range of different mammalian species in which they cause systemic infection involving many different cell types. Regulated, or programmed cell death has a recognized potential to eliminate infected cells prior to completion of viral replication and release of progeny.
View Article and Find Full Text PDFToxics
December 2024
Nantong Key Laboratory of Environmental Toxicology, Department of Occupational Medicine and Environmental Toxicology, School of Public Health, Nantong University, Nantong 226019, China.
Polystyrene nanoplastics (PS-NPs), a pervasive component of plastic pollution, have emerged as a significant environmental and health threat due to their microscopic size and bioaccumulative properties. This review systematically explores the biological effects and mechanisms of PS-NPs on cellular systems, encompassing oxidative stress, mitochondrial dysfunction, DNA damage, inflammation, and disruptions in autophagy. Notably, PS-NPs induce multiple forms of cell death, including apoptosis, ferroptosis, necroptosis, and pyroptosis, mediated through distinct yet interconnected molecular pathways.
View Article and Find Full Text PDFNutrients
December 2024
Department of Biochemistry, College of Medicine, Soonchunhyang University, Cheonan 31511, Republic of Korea.
Dysregulated cellular metabolism is known to be associated with drug resistance in cancer treatment. In this study, we investigated the impact of cellular adaptation to lactic acidosis on intracellular energy metabolism and sensitivity to docetaxel in prostate carcinoma (PC) cells. The effects of curcumin and the role of hexokinase 2 (HK2) in this process were also examined.
View Article and Find Full Text PDFInt J Mol Sci
December 2024
Department of Molecular Biotechnology and Genetics, University of Lodz, Banacha 12/16, 90-237 Lodz, Poland.
The key role of calcium in various physiological and pathological processes includes its involvement in various forms of regulated cell death (RCD). The concept of 'calcicoptosis' has been introduced as a calcium-induced phenomenon associated with oxidative stress and cellular damage. However, its definition remains controversial within the research community, with some considering it a general form of calcium overload stress, while others view it as a tumor-specific calcium-induced cell death.
View Article and Find Full Text PDFInt J Mol Sci
December 2024
Centre for Heart Research, The Westmead Institute for Medical Research, The University of Sydney, Westmead, NSW 2145, Australia.
Programmed cell death, especially programmed necrosis such as necroptosis, ferroptosis, and pyroptosis, has attracted significant attention recently. Traditionally, necrosis was thought to occur accidentally without signaling pathways, but recent discoveries have revealed that molecular pathways regulate certain forms of necrosis, similar to apoptosis. Accumulating evidence indicates that programmed necrosis is involved in the development of various diseases, including myocardial ischemia-reperfusion injury (MIRI).
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!