Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
The Josephson junction (JJ) is the corner stone of superconducting electronics and quantum information processing. While the technology for fabricating low T JJ is mature and delivers quantum circuits able to reach the "quantum supremacy", the fabrication of reproducible and low-noise high-T JJ is still a challenge to be taken up. Here we report on noise properties at RF frequencies of recently introduced high-T Josephson nano-junctions fabricated by mean of a Helium ion beam focused at sub-nanometer scale on a YBaCuO thin film. We show that their current-voltage characteristics follow the standard Resistively-Shunted-Junction (RSJ) circuit model, and that their characteristic frequency f = (2e/h)IR reaches ~300 GHz at low temperature. Using the "detector response" method, we evidence that the Josephson oscillation linewidth is only limited by the thermal noise in the RSJ model for temperature ranging from T ~ 20 K to 75 K. At lower temperature and for the highest He irradiation dose, the shot noise contribution must also be taken into account when approaching the tunneling regime. We conclude that these Josephson nano-junctions present the lowest noise level possible, which makes them very promising for future applications in the microwave and terahertz regimes.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7314811 | PMC |
http://dx.doi.org/10.1038/s41598-020-66882-1 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!