The glass-forming ability is an important material property for manufacturing glasses and understanding the long-standing glass transition problem. Because of the nonequilibrium nature, it is difficult to develop the theory for it. Here we report that the glass-forming ability of binary mixtures of soft particles is related to the equilibrium melting temperatures. Due to the distinction in particle size or stiffness, the two components in a mixture effectively feel different melting temperatures, leading to a melting temperature gap. By varying the particle size, stiffness, and composition over a wide range of pressures, we establish a comprehensive picture for the glass-forming ability, based on our finding of the direct link between the glass-forming ability and the melting temperature gap. Our study reveals and explains the pressure and interaction dependence of the glass-forming ability of model glass-formers, and suggests strategies to optimize the glass-forming ability via the manipulation of particle interactions.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7314759 | PMC |
http://dx.doi.org/10.1038/s41467-020-16986-z | DOI Listing |
Nat Mater
January 2025
Department of Fundamental Engineering, Institute of Industrial Science, The University of Tokyo, Tokyo, Japan.
Supercooled liquids display sluggish dynamics, often attributed to their structural characteristics, yet the underlying mechanism remains elusive. Here we conduct numerical investigations into the structure-dynamics relationship in model glass-forming liquids, with a specific focus on an elementary particle rearrangement mode known as the 'T1 process'. We discover that the ability of a T1 process to preserve glassy structural order before and after is pivotal towards determining a liquid's fragility-whether it exhibits super-Arrhenius-like or Arrhenius-like behaviour.
View Article and Find Full Text PDFAdv Mater
January 2025
State Key Laboratory of Luminescent Materials and Devices, Guangdong Provincial Key Laboratory of Fiber Laser Materials and Applied Techniques, School of Physics and Optoelectronics, South China University of Technology, Guangzhou, 510641, China.
Materials (Basel)
November 2024
Institute of Technology, University of the National Education Commission (UKEN), ul. Podchorążych 2, 30-084 Krakow, Poland.
This study investigates the influence of cooling rates on the microstructure and phase transformations of the high-entropy alloy CrMnFeCoNiP. The alloy was synthesized via arc melting and subjected to three cooling conditions: slow cooling (52 K/s), accelerated cooling after a short electric arc pulse (3018 K/s), and rapid quenching (10⁵-10⁶ K/s) using the melt-spinning method. The microstructures were characterized using X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), and Mössbauer spectroscopy.
View Article and Find Full Text PDFJ Phys Chem B
December 2024
Specialty Glass Division, CSIR-Central Glass and Ceramic Research Institute, 196 Raja S.C. Mullick Road, Kolkata, West Bengal 700032, India.
Broad band transmitting glasses from visible to mid-infrared with good mechanical strength, chemical durability, glass-forming ability, and thermal stability are preferred for optics and laser technology applications. Generally, low phonon energy glasses possess an extended transmission cutoff toward mid-infrared, but at the same time, retention of other desired properties is challenging for the researchers. In this work, we have shown that mixed alkaline earth (Ba/Sr) would have the potential to improve overall glass properties while retaining its low phonon energy when CaO is partially substituted by BaO/SrO in calcium magnesium zinc silica-aluminate (CMZSA) glass.
View Article and Find Full Text PDFJ Mol Model
November 2024
Department of Physics, Harbin Normal University, Harbin, 150025, People's Republic of China.
Context: BCC and FCC metals have different glass-forming abilities (GFA) and exhibit different characteristics during the glass transition. However, the structural origin of their different GFAs is still not clear. Here, we explored the structures of eight monatomic metallic glasses by combining molecular dynamics (MD) simulations and machine learning (ML).
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!