Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
The preparation of stereochemistry- and sequence-defined polymers, in which different monomer units are arranged in an ordered fashion just like biopolymers, is of great interest and has been a long-standing goal for chemists due to the expectation of unique macroscopic properties. Here, we describe the enantioselective terpolymerization of racemic terminal epoxides, -epoxides, and anhydrides mediated by the privileged chiral dinuclear Al(III) catalyst system, to afford optically active polyester terpolymers with either gradient or random distribution as determined by the epoxides employed during their preparation. The enantioselective terpolymerization of racemic -butyl glycidyl ether (-TBGE) and cyclopentene oxide with phthalic anhydride (PA) or naphthyl anhydride (NA) gives novel gradient polyesters, in which the crystallization behavior varies continuously along the main chain, due to the decrement of one ester component and the increment of the other occurring sequentially from one chain end to the other. In contrast, the enantioselective terpolymerization of -TBGE and -epoxide (cyclohexene oxide, 3,4-epoxytetrahydrofuran, or 1,4-dihydronaphthalene oxide) with an anhydride (PA or NA) provided chiral statistical terpolyesters with the random distribution of two kinds of ester units, resulting in a material possessing a mixed glass transition temperature. The present study therefore provides a convenient route to chiral polyesters bearing a range of physical and degradability properties.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7355046 | PMC |
http://dx.doi.org/10.1073/pnas.2005519117 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!