Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Background: Dysfunction in brain network dynamics has been found to correlate with many psychiatric disorders. However, there is limited research regarding resting electroencephalogram (EEG) brain network and its association with cognitive process for patients with methamphetamine use disorder (MUD). This study aimed at using EEG microstate analysis to determine whether brain network dynamics in patients with MUD differ from those of healthy controls (HC).
Methods: A total of 55 MUD patients and 27 matched healthy controls were included for analysis. The resting brain activity was recorded by 64-channel electroencephalography. EEG microstate parameters and intracerebral current sources of each EEG microstate were compared between the two groups. Generalized linear regression model was used to explore the correlation between significant microstates with drug history and cognitive functions.
Results: MUD patients showed lower mean durations of the microstate classes A and B, and a higher global explained variance of the microstate class C. Besides, MUD patients presented with different current density power in microstates A, B, and C relative to the HC. The generalized linear model showed that MA use frequency is negatively correlated with the MMD of class A. Further, the generalized linear model showed that MA use frequency, scores of Two-back task, and the error rate of MA word are correlated with the MMD and GEV of class B, respectively.
Conclusions: Intracranial current source densities of resting EEG microstates are disrupted in MUD patients, hence causing temporal changes in microstate topographies, which are correlated with attention bias and history of drug use.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7315471 | PMC |
http://dx.doi.org/10.1186/s12888-020-02743-5 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!