Background Arterial restenosis after vascular surgery is a common cause of midterm restenosis and treatment failure. Herein, we aim to investigate the role of microbe-derived butyrate, FFAR2 (free fatty acid receptor 2), and FFAR3 (free fatty acid receptor 3) in mitigating neointimal hyperplasia development in remodeling murine arteries after injury. Methods and Results C57BL/6 mice treated with oral vancomycin before unilateral femoral wire injury to deplete gut microbiota had significantly diminished serum and stool butyrate and more neointimal hyperplasia development after arterial injury, which was reversed by concomitant butyrate supplementation. Deficiency of FFAR3 but not FFAR2, both receptors for butyrate, exacerbated neointimal hyperplasia development after injury. FFAR3 deficiency was also associated with delayed recovery of the endothelial layer in vivo. FFAR3 gene expression was observed in multiple peripheral arteries, and expression was increased after arterial injury. Treatment of endothelial but not vascular smooth muscle cells with the pharmacologic FFAR3 agonist 1-methylcyclopropane carboxylate stimulated cellular migration and proliferation in scratch assays. Conclusions Our results support a protective role for butyrate and FFAR3 in the development of neointimal hyperplasia after arterial injury and delineate activation of the butyrate-FFAR3 pathway as a valuable strategy for the prevention and treatment of neointimal hyperplasia.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7670501PMC
http://dx.doi.org/10.1161/JAHA.120.016235DOI Listing

Publication Analysis

Top Keywords

neointimal hyperplasia
24
free fatty
16
fatty acid
16
acid receptor
16
arterial injury
16
hyperplasia development
12
microbe-derived butyrate
8
receptor free
8
injury
7
neointimal
6

Similar Publications

In-stent restenosis (ISR) following interventional therapy is a fatal clinical complication. Current evidence indicates that neointimal hyperplasia driven by uncontrolled proliferation of vascular smooth muscle cells (VSMC) is a major cause of restenosis. This implies that inhibiting VSMC proliferation may be an attractive approach for preventing in-stent restenosis.

View Article and Find Full Text PDF

Modification of polylactic acid (PLA) is a promising strategy for the next generation of bioresorbable vascular stent biomaterials. With this focus, FeMOFs nanoparticles was incorporated in PLA, and then post loading of carbon monoxide (CO) was performed by pressurization. It showed FeMOFs incorporation increased hydrophilicity of the surface and CO loading, and CO release was sustained at least for 3 days.

View Article and Find Full Text PDF

Recurrent drug eluting stent, in-stent restenosis (DES-ISR): Epidemiology, pathophysiology & treatment.

Prog Cardiovasc Dis

January 2025

Division of Cardiovascular Medicine, Department of Medicine, University of Virginia Health System, 1215 Lee Street, Charlottesville, VA 22909, United States of America. Electronic address:

Coronary artery in-stent restenosis (ISR) is driven by neointimal hyperplasia and neo-atherosclerosis in previously placed stents. Drug eluting stents (DES) have been adopted as first line therapy for the initial episode of ISR. However, recurrent ISR has limited durable salvage options.

View Article and Find Full Text PDF

Background: Magnolia kobus DC (MO), as a plant medicine, has been reported to have various physiological activities, including neuroprotective, anti-inflammatory, and anti-diabetic effects. However, vascular protective effects of MO remain incompletely understood. In this study, we evaluated the vascular protective effect of MO against ferroptosis in a carotid artery ligation (CAL)-induced neointimal hyperplasia mouse model and in aortic thoracic smooth muscle A7r5 cells.

View Article and Find Full Text PDF

Background: Elective unprotected left main (ULM) percutaneous coronary intervention (PCI) has long-term mortality rates comparable to surgical revascularization, thanks to advances in drug-eluting stent (DES) design, improved PCI techniques, and frequent use of intravascular imaging. However, urgent PCI of ULM culprit lesions remains associated with high in-hospital mortality and unfavourable long-term outcomes, including DES restenosis and stent thrombosis (ST). This analysis aimed to examine the long-term outcomes and healing of DES implanted in ULM during primary PCI using high-resolution optical coherence tomography (OCT) imaging.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!