A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

A Deep-Learning Model for Underwater Position Sensing of a Wake's Source Using Artificial Seal Whiskers. | LitMetric

A Deep-Learning Model for Underwater Position Sensing of a Wake's Source Using Artificial Seal Whiskers.

Sensors (Basel)

Department of Mechanical Engineering and Aeronautics, City University of London, Northampton Square, London EC1V 0HB, UK.

Published: June 2020

Various marine animals possess the ability to track their preys and navigate dark aquatic environments using hydrodynamic sensing of the surrounding flow. In the present study, a deep-learning model is applied to a biomimetic sensor for underwater position detection of a wake-generating body. The sensor is composed of a bundle of spatially-distributed optical fibers that act as artificial seal-like whiskers and interact with the body's wake in the form of time-variant (bending) deflections. Supervised learning is employed to relate the vibrations of the artificial whiskers to the position of an upstream cylinder. The labeled training data are prepared based on the processing and reduction of the recorded bending responses of the artificial whiskers while the cylinder is placed at various locations. An iterative training algorithm is performed on two neural-network models while using the 10-fold cross-validation technique. The models are able to predict the coordinates of the cylinder in the two-dimensional (2D) space with a high degree of accuracy. The current implementation of the sensor can passively sense the wake generated by the cylinder at Re ≃ 6000 and estimate its position with an average error smaller than the characteristic diameter of the cylinder and for inter-distances (in the water tunnel) up to 25-times D.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7349333PMC
http://dx.doi.org/10.3390/s20123522DOI Listing

Publication Analysis

Top Keywords

deep-learning model
8
underwater position
8
artificial whiskers
8
cylinder
5
model underwater
4
position
4
position sensing
4
sensing wake's
4
wake's source
4
artificial
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!