Stand-alone portable air purifiers (APs) have become an increasingly popular method of controlling individual inhalation exposure. Exposure to bacterial endotoxins has a causative role in respiratory inhalation health. Here, we studied the changes in endotoxin levels in indoor air before and after purification by a portable AP equipped with HEPA (high-efficiency particulate air) filters. An increase in endotoxins was observed when a previously used AP was turned on to clean the air. Replacing the HEPA filters in the AP helped to mitigate the increase in endotoxins of larger sizes but not endotoxins of smaller sizes. Consequently, the use of APs could lead to increased endotoxin deposition in airways, especially in the alveolar region. The endotoxin concentrations on the HEPA filters were well correlated with the free DNA concentrations on the HEPA filters. This correlation indicates that the disrupted bacteria, which released free DNA, could also release endotoxins, thus making HEPA filters a source of indoor airborne endotoxins. Our results illustrate a potential endotoxin inhalation risk associated with HEPA-APs as an air cleaning strategy and highlight the importance of composition-specific air cleaning while reducing the particle number/mass.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.envint.2020.105878 | DOI Listing |
ACS EST Air
January 2025
Lyles School of Civil & Construction Engineering, Purdue University, West Lafayette, Indiana 47907, United States.
Commercial HVAC systems intended to mitigate indoor air pollution are operated based on standards that exclude aerosols with smaller diameters, such as ultrafine particles (UFPs, D ≤ 100 nm), which dominate a large proportion of indoor and outdoor number-based particle size distributions. UFPs generated from occupant activities or infiltrating from the outdoors can be recirculated and accumulate indoors when they are not successfully filtered by an air handling unit. Monitoring UFPs in real occupied environments is vital to understanding these source and mitigation dynamics, but capturing their rapid transience across multiple locations can be challenging due to high-cost instrumentation.
View Article and Find Full Text PDFEClinicalMedicine
January 2025
WEISS Centre, University College London, UK.
Background: The COVID-19 pandemic highlighted the need for improved infectious aerosol concentrations through interventions that reduce the transmission of airborne infections. The aims of this review were to map the existing literature on interventions used to improve infectious aerosol concentrations in hospitals and understand challenges in their implementation.
Methods: We reviewed peer-reviewed articles identified on three databases, MEDLINE, Web of Science, and the Cochrane Library from inception to July 2024.
J Expo Sci Environ Epidemiol
January 2025
Department of Environmental and Occupational Health, Joe C. Wen School of Population & Public Health, University of California, Irvine, CA, USA.
Background: Children living in communities with lower socioeconomic status and higher minority populations are often disproportionately exposed to particulate matter (PM) compared to children living in other communities.
Objective: We assessed whether adding HEPA filter air cleaners to classrooms with existing HVAC systems reduces indoor air pollution exposure.
Methods: From July 2022 to June 2023, using a block randomized crossover trial of 17 Los Angeles Unified School District elementary schools, classroom PM concentrations were monitored and compared for 99 classrooms with HEPA filter air cleaners and 87 classrooms with non-HEPA filter air cleaners.
BMJ Open
December 2024
Biological and Biomedical Sciences, The Aga Khan University, Karachi, Pakistan.
Introduction: Asthma has been classified as a major non-communicable disease by the WHO. With the worsening air quality index worldwide, the burden of asthma has increased specifically in children. The focus of the management strategy of asthma has shifted from traditional pharmacological treatments towards non-pharmacological preventive and control therapy in recent decades.
View Article and Find Full Text PDFRegen Ther
March 2025
Department of Biotechnology, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan.
Introduction: The manufacture of cell-based products requires assuring sterility through all processes, with aseptic processing in a cleanroom. The environment consists of a critical processing zone (CPZ) that can ensure a level of cleanliness that allows cell culture containers to be opened, and a support zone (SZ) adjacent to it and accessed by an operator. In this study, an environment for cell manufacturing was proposed by designing an air mass balance in an aseptic processing area (APA).
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!