In this work, the design of a new generation of functionalized large pore silica nanoparticles is addressed for the specific removal of iron from biological environments. Herein, mesoporous silica with a large pore stellate morphology, denoted STMS, were grafted with the highly specific iron chelating agent desferrioxamine B, DFoB. The challenge of this work was the step by step elaboration of the nanoplatform and the evaluation of its chelating efficiency and selectivity. Hence, the controlled covalent grafting of DFoB specific iron chelator, was successfully achieved ensuring a high grafting rate of chelating ligand of 730 nmol·mg (i.e., 0.85 ligand·nm). Furthermore, these highly chelating STMS silica were able to capture iron(III) stabilized with nitrilotriacetic acid (NTA) in solution at physiological pH with a fast kinetics (less than 30 min). For a stoichiometry 0.85:1 (FeNTA : DFoB), the STMS-DFoB nanoparticles allowed reaching capture capacity and efficiency of 480 nmolFe/mg SiO and 78%, respectively. Regarding the selectivity features of the removal process, studies were performed with two different media composed of various metal ions: (i) an equimolar solution of various metal cations and (ii) a Barth's buffer mimicking the brain solution composition. In both cases, the chelating STMS-DFoB showed a high selectivity for iron versus other ions at the same (Al) or different valency (Na, K…). Finally, this work paves the way for new nanosystems for metal overload treatments as well as for future highly chelating nanoplatforms that can be used at the interface between depollution and nanomedecine.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.jcis.2020.06.013 | DOI Listing |
Mater Today Bio
February 2025
Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), NMPA Key Laboratory for Research and Evaluation of Radiopharmaceuticals (National Medical Products Administration), Department of Nuclear Medicine, Peking University Cancer Hospital & Institute, Beijing, 100142, China.
Fibroblast activating protein (FAP) is up-regulated in cancer-associated fibroblasts (CAFs) of more than 90 % of tumor microenvironment and also highly expressed on the surface of multiple tumor cells like glioblastoma, which can be used as a specific target for tumor diagnosis and treatment. At present, small-molecule radiotracer targeting FAP with high specificity exhibit limited functionality, which hinders the integration of theranostics as well as multifunctionality. In this work, we have engineered a multifunctional nanoplatform utilizing organic melanin nanoparticles that specifically targets FAP, facilitating both multimodal imaging and synergistic therapeutic applications.
View Article and Find Full Text PDFACS Appl Mater Interfaces
January 2025
Tianjin Key Laboratory for Marine Environmental Research and Service, School of Marine Science and Technology, Tianjin University, Tianjin 300072, China.
Marine biofouling and corrosion have become the main problems affecting the development of the marine industry. Silicone-based coatings have been widely used for antifouling and anticorrosion due to their low surface energy. However, the poor adhesion and low mechanical stability of these materials limit their application in complex marine environments.
View Article and Find Full Text PDFJ Am Chem Soc
January 2025
Materdicine Lab, School of Life Sciences, Shanghai University, 200444 Shanghai, P. R. China.
The presence of a substantial necrotic core in atherosclerotic plaques markedly heightens the risk of rupture, a consequence of elevated iron levels that exacerbate oxidative stress and lipid peroxidation, thereby sustaining a detrimental cycle of ferroptosis and inflammation. Concurrently targeting both ferroptosis and inflammation is crucial for the effective treatment of vulnerable plaques. In this study, we introduce gallium hexacyanoferrate nanoabsorption catalysts (GaHCF NACs) designed to disrupt this pathological cycle.
View Article and Find Full Text PDFFront Physiol
January 2025
Plant Protection Institute, Hebei Academy of Agriculture and Forestry Sciences, Key Laboratory of Integrated Pest Management on Crops in Northern Region of North China, Ministry of Agriculture and Rural Affairs, IPM Innovation Center of Hebei Province, International Science and Technology Joint Research Center on IPM of Hebei Province, Baoding, China.
Background: (Fabricius) (Hemiptera: Alydidae) is a major soybean pest throughout East Asia that relies on its advanced olfactory system for the perception of plant-derived volatile compounds and aggregation pheromones for conspecific and host plant localization. Odorant binding proteins (OBPs) facilitate the transport of odorant compounds across the sensillum lymph within the insect olfactory system, enabling their interaction with odorant receptors (ORs).
Methods: Real-time quantitative PCR (qRT-PCR) analyses, fluorescence-based competitive binding assays, and molecular docking analyses were applied to assess the expression and ligand-binding properties of OBP38 from .
Anal Chim Acta
February 2025
Department of Chemistry, Tamkang University, New Taipei City, 25137, Taiwan. Electronic address:
Background: Trivalent chromium (Cr(III)) and its highly soluble carboxyl complexes, often discharged into the environment by industries such as electroplating, leather tanning, and textile manufacturing, present severe risks to human health and ecosystems due to their high toxicity. These compounds are notoriously difficult to detect and remove during wastewater treatment, as they can persist in aqueous environments. Consequently, there is a pressing need for the development of simple, cost-effective, and reliable methods for their detection, which can improve monitoring, facilitate timely interventions, and enhance environmental protection efforts.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!