Many membraneless organelles form through liquid-liquid phase separation, but how their size is controlled and whether size is linked to function remain poorly understood. The histone locus body (HLB) is an evolutionarily conserved nuclear body that regulates the transcription and processing of histone mRNAs. Here, we show that Drosophila HLBs form through phase separation. During embryogenesis, the size of HLBs is controlled in a precise and dynamic manner that is dependent on the cell cycle and zygotic histone gene activation. Control of HLB growth is achieved by a mechanism integrating nascent mRNAs at the histone locus, which facilitates phase separation, and the nuclear concentration of the scaffold protein multi-sex combs (Mxc), which is controlled by the activity of cyclin-dependent kinases. Reduced Cdk2 activity results in smaller HLBs and the appearance of nascent, misprocessed histone mRNAs. Thus, our experiments identify a mechanism linking nuclear body growth and size with gene expression.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7423771PMC
http://dx.doi.org/10.1016/j.devcel.2020.06.003DOI Listing

Publication Analysis

Top Keywords

phase separation
16
histone locus
12
nuclear body
8
histone mrnas
8
histone
7
cdk-regulated phase
4
separation
4
separation seeded
4
seeded histone
4
histone genes
4

Similar Publications

Lipid-induced condensate formation from the Alzheimer's Aβ peptide triggers amyloid aggregation.

Proc Natl Acad Sci U S A

January 2025

Yusuf Hamied Department of Chemistry, Centre for Misfolding Diseases, University of Cambridge, Cambridge CB2 1EW, United Kingdom.

The onset and development of Alzheimer's disease is linked to the accumulation of pathological aggregates formed from the normally monomeric amyloid-β peptide within the central nervous system. These Aβ aggregates are increasingly successfully targeted with clinical therapies at later stages of the disease, but the fundamental molecular steps in early stage disease that trigger the initial nucleation event leading to the conversion of monomeric Aβ peptide into pathological aggregates remain unknown. Here, we show that the Aβ peptide can form biomolecular condensates on lipid bilayers both in molecular assays and in living cells.

View Article and Find Full Text PDF

Achieving the adsorptive separation and chromatographic separation of industrially the important chemicals toluene and methylcyclohexane using the same material is a highly desirable goal. We have successfully accomplished this using a fluorinated macrocycle tetrafluoroterphen[3]arene (4FTP3), which was synthesized and used for gas chromatographic separation in our previous work. The macrocycle 4FTP3 permitted the adsorptive separation of toluene from a toluene/methylcyclohexane mixture (1:1, v/v) with a purity of 99.

View Article and Find Full Text PDF

Recovery of Iodine in the Gaseous Phase Using the Silicone Hollow Fiber Membrane Module.

Membranes (Basel)

January 2025

Godo Shigen Co., Ltd., 1545-1 Nanaido, Chosei-mura, Chiba 299-4333, Japan.

Iodine, being an important resource, must be recovered and reused. Iodine is not only attracted to the hydrophobic silicone membrane but also easily vaporized. In this study, we explored the use of five types of silicone hollow fiber membrane modules (SFMMs) for separating iodine in the gaseous phase.

View Article and Find Full Text PDF

Development of Hollow Fiber Membranes Suitable for Outside-In Filtration of Human Blood Plasma.

Membranes (Basel)

January 2025

Advanced Organ Bioengineering and Therapeutics, Faculty of Science and Technology, University of Twente, Zuidhorst 28, Drienerlolaan 5, 7522 NB Enschede, The Netherlands.

Hemodialysis (HD) is a critical treatment for patients with end-stage kidney disease (ESKD). The effectiveness of conventional dialyzers used there could be compromised during extended use due to limited blood compatibility of synthetic polymeric membranes and sub-optimal dialyzer design. In fact, blood flow in the hollow fiber (HF) membrane could trigger inflammatory responses and thrombus formation, leading to reduced filtration efficiency and limiting therapy duration, a consequence of flowing the patients' blood through the lumen of each fiber while the dialysate passes along the inter-fiber space (IOF, inside-out filtration).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!