Interactions between Passive and Active Vibrations in the Organ of Corti In Vitro.

Biophys J

Department of Biomedical Engineering, University of Rochester, Rochester, New York; Department of Mechanical Engineering, University of Rochester, Rochester, New York; Department of Neuroscience, University of Rochester, Rochester, New York. Electronic address:

Published: July 2020

High sensitivity and selectivity of hearing require an active cochlea. The cochlear sensory epithelium, the organ of Corti, vibrates because of external and internal excitations. The external stimulation is acoustic pressures mediated by the scala fluids, whereas the internal excitation is generated by a type of sensory receptor cells (the outer hair cells) in response to the acoustic vibrations. The outer hair cells are cellular actuators that are responsible for cochlear amplification. The organ of Corti is highly structured for transmitting vibrations originating from acoustic pressure and active outer hair cell force to the inner hair cells that synapse on afferent nerves. Understanding how the organ of Corti vibrates because of acoustic pressure and outer hair cell force is critical for explaining cochlear function. In this study, cochleae were freshly isolated from young gerbils. The organ of Corti in the excised cochlea was subjected to mechanical and electrical stimulation that are analogous to acoustic and cellular stimulation in the natural cochlea. Organ of Corti vibrations, including those of individual outer hair cells, were measured using optical coherence tomography. Respective vibration patterns due to mechanical and electrical stimulation were characterized. Interactions between the two vibration patterns were investigated by applying the two forms of stimulation simultaneously. Our results show that the interactions could be either constructive or destructive, which implies that the outer hair cells can either amplify or reduce vibrations in the organ of Corti. We discuss a potential consequence of the two interaction modes for cochlear frequency tuning.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7376138PMC
http://dx.doi.org/10.1016/j.bpj.2020.06.011DOI Listing

Publication Analysis

Top Keywords

organ corti
28
outer hair
24
hair cells
20
vibrations organ
8
corti vibrates
8
acoustic pressure
8
hair cell
8
cell force
8
mechanical electrical
8
electrical stimulation
8

Similar Publications

Hearing loss is highly related to acoustic injuries and mechanical damage of ear tissues. The mechanical responses of ear tissues are difficult to measure experimentally, especially cochlear hair cells within the organ of Corti (OC) at microscale. Finite element (FE) modeling has become an important tool for simulating acoustic wave transmission and studying cochlear mechanics.

View Article and Find Full Text PDF

AAVR Expression is Essential for AAV Vector Transduction in Sensory Hair Cells.

Adv Sci (Weinh)

January 2025

Department of Otolaryngology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, Guangdong, 510120, China.

Adeno-associated virus (AAV) vectors are a leading platform for gene therapy. Recently, AAV-mediated gene therapy in the inner ear has progressed from laboratory use to clinical trials, but the lower transduction rates in outer hair cells (OHCs) in the organ of Corti and in vestibular hair cells in adult mice still pose a challenge. OHCs are particularly vulnerable to inner ear insults.

View Article and Find Full Text PDF

Hearing loss (HL) is the most common disorder in newborns with a highly heterogeneous genetic background. Despite significant progress in screening and identifying genes related to congenital hearing loss, there are still candidate genes implicated in HL that remain undiscovered. We investigated HL in 43 Chinese families by segregating bilateral sensorineural HL via whole-exome sequencing (WES) and Sanger sequencing.

View Article and Find Full Text PDF

Mutations in the gene cause the most common form of human hereditary hearing loss, known as DFNB1. is expressed in two cell groups of the cochlea-epithelial cells of the organ of Corti and fibrocytes of the inner sulcus and lateral wall-but not by sensory hair cells or neurons. Attempts to treat mouse models of DFNB1 with AAV vectors mediating nonspecific expression have not substantially restored function, perhaps because inappropriate expression in hair cells and neurons could compromise their electrical activity.

View Article and Find Full Text PDF

Background: Sensorineural hearing loss (SNHL) is the most common sensory deficit worldwide. Current solutions for SNHL, including hearing aids, cochlear implants, and hearing assistive devices, do not provide consistent results and fail to address the underlying pathology of hair cell and ganglion cell damage. Stem cell therapy is a cornerstone in regenerative medicine.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!