We previously demonstrated that hexokinase II (HK2) dissociation from mitochondria during cardiac ischemia correlates with cytochrome c (cyt-c) loss, oxidative stress and subsequent reperfusion injury. However, whether HK2 release is the primary signal mediating this ischemia-induced mitochondrial dysfunction was not established. To investigate this, we studied the effects of dissociating HK2 from isolated heart mitochondria. Mitochondria isolated from Langendorff-perfused rat hearts before and after 30 min global ischemia ± ischemic preconditioning (IPC) were subject to in vitro dissociation of HK2 by incubation with glucose-6-phosphate at pH 6.3. Prior HK2 dissociation from pre- or end-ischemic heart mitochondria had no effect on their cyt-c release, respiration (± ADP) or mitochondrial permeability transition pore (mPTP) opening. Inner mitochondrial membrane morphology was assessed indirectly by monitoring changes in light scattering (LS) and confirmed by transmission electron microscopy. Although no major ultrastructure differences were detected between pre- and end-ischemia mitochondria, the amplitude of changes in LS was reduced in the latter. This was prevented by IPC but not mimicked in vitro by HK2 dissociation. We also observed more Drp1, a mitochondrial fission protein, in end-ischemia mitochondria. IPC failed to prevent this increase but did decrease mitochondrial-associated dynamin 2. In vitro HK2 dissociation alone cannot replicate ischemia-induced effects on mitochondrial function implying that in vivo dissociation of HK2 modulates end-ischemia mitochondrial function indirectly perhaps involving interaction with mitochondrial fission proteins. The resulting changes in mitochondrial morphology and cristae structure would destabilize outer / inner membrane interactions, increase cyt-c release and enhance mPTP sensitivity to [Ca2+].

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7313731PMC
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0234653PLOS

Publication Analysis

Top Keywords

hk2 dissociation
16
mitochondrial function
12
mitochondrial
9
permeability transition
8
transition pore
8
hk2
8
heart mitochondria
8
dissociation hk2
8
cyt-c release
8
end-ischemia mitochondria
8

Similar Publications

Objective: To elucidate the association between the changes in intracellular metabolism in the early stage of B cell activation and systemic lupus erythematosus (SLE) pathogenesis.

Methods: CD19 or CD19CD27 (naïve) cells from the peripheral blood of healthy controls and lupus patients were cultured under different stimuli. The changes in intracellular metabolism and signalling pathways in these cells were evaluated.

View Article and Find Full Text PDF

In this paper, we investigated the anticancer effect and the mechanism of our newly synthesized bibenzyl 8Ae against human lung cancer A549 cells. Compound 8Ae could induce apoptosis by inhibiting the glycolysis in A549 cells. Hexokinase 2 (HK2), the first key enzyme in glycolysis process, was significantly down-regulated by 8Ae.

View Article and Find Full Text PDF

STING regulates aging-related osteoporosis by mediating the Hk2-Vdac1 mitochondrial axis.

Free Radic Biol Med

November 2024

Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Engineering Research Center of Oral Biomaterials and Devices of Zhejiang Province, Hangzhou, 310000, China. Electronic address:

Metabolic abnormalities and mild inflammation are hallmarks of aging and major driving factors for aging-related damage and bone metabolic diseases. Mitochondria are crucial links in energy metabolism and immune homeostasis regulation. Mitochondrial dysfunction is considered one of the pathogenic factors of aging-related osteoporosis, but its mechanism of action needs further research.

View Article and Find Full Text PDF

Interleukin-6 classic and trans-signaling utilize glucose metabolism reprogramming to achieve anti- or pro-inflammatory effects.

Metabolism

June 2024

Department of Cardiology, Zhongnan Hospital of Wuhan University, Wuhan 430072, China; Institute of Myocardial Injury and Repair, Wuhan University, Wuhan 430072, China. Electronic address:

Article Synopsis
  • Interleukin (IL)-6 has both anti-inflammatory and pro-inflammatory roles, regulated by classic and trans-signaling pathways, but the differences in their downstream effects were previously unclear.
  • Recent findings reveal that IL-6 influences how cells process glucose to regulate inflammation, with classic signaling promoting oxidative phosphorylation (OxPhos) and trans-signaling pushing towards anaerobic glycolysis.
  • The classic pathway supports the formation of regulatory T cells through a specific signaling complex, while the trans-pathway enables the development of Th17 cells, highlighting how IL-6 signaling determines inflammatory outcomes based on metabolic changes.
View Article and Find Full Text PDF

Background: Glucose metabolism, specifically, hexokinase 2 (HK2), has a critical role in rheumatoid arthritis (RA) fibroblast-like synoviocyte (FLS) phenotype. HK2 localizes not only in the cytosol but also in the mitochondria, where it protects mitochondria against stress. We hypothesize that mitochondria-bound HK2 is a key regulator of RA FLS phenotype.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!