Improvement of ferrous ion-dependent nitrate removal (FeNiR) process with chelating ferrous ion as substrate.

J Environ Manage

Key Laboratory of Development and Application of Rural Renewable Energy, Ministry of Agriculture and Rural Affairs, Chengdu, 610041, PR China; Biogas Institute of Ministry of Agriculture and Rural Affairs, Chengdu, 610041, PR China. Electronic address:

Published: October 2020

In order to improve the ferrous ion-dependent nitrate removal (FeNiR) process, hexametaphosphate chelated ferrous ion was used as substrate to replace the free ferrous ion. With hexametaphosphate chelated ferrous ion as substrate, the influent pH was adjusted to 6.8, and as a result a higher effluent pH (7.2) was detected. The volumetric removal rate (VRR) of nitrate kept at 0.42 ± 0.03 kg-N/(m∙d) for 48 days and the corresponding nitrogen removal efficiency was 94.39 ± 4.57%. After 88 days of cultivation, FeNiR granules became small because of the oligotrophic substrate. The transmission electron microscope (TEM) analysis showed that less iron encrustation was formed on the surface or in the periplasm of FeNiR cells. The linear curve of the living cell percentage versus time showed that the death rate of FeNiR cells with chelated ferrous ion as substrate was much lower than that with free ferrous ion as substrate (0.4210 vs 0.9221). Without iron encrustation, both the FeNiR activity and alkaline phosphatase (ALP) activity of FeNiR cells kept at high level and thus the efficiency of the FeNiR reactor kept stable and high. With hexametaphosphate chelated ferrous ion as substrate, the pH in bulk liquid was high (pH = 7.2) resulting in the high FeNiR rate, and less iron encrustation was formed around cells ensuring the stability of high FeNiR rate. Therefore, using hexametaphosphate chelated ferrous ion as substrate was an efficient way to improve the FeNiR process.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jenvman.2020.110841DOI Listing

Publication Analysis

Top Keywords

ferrous ion
32
ion substrate
28
chelated ferrous
20
hexametaphosphate chelated
16
fenir process
12
iron encrustation
12
fenir cells
12
fenir
11
ferrous
9
ferrous ion-dependent
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!