Background: Amyloid Precursor Protein (APP)-Binding Protein 1 (APP-BP1) is a crucial regulator of many key signaling pathways and functions mainly as a scaffold protein to enhance molecular interactions and facilitate catalytic reactions. The interaction of APP-BP1 with Amyloid Precursor Protein (APP) plays a role in cell cycle transit control, which determines the mechanism behind the loss of cell cycle regulation in Alzheimer's Disease (AD). In contrast, neddylation, a posttranslational modification mediated by conjugation of ubiquitin-like protein neural precursor cell expressed developmentally downregulated protein 8 (NEDD8), is activated by a heterodimer composed of APP-BP1 and NEDD8-activating enzyme E1 catalytic subunit (Uba3). NEDD8 controls vital biological events, and along with APP-BP1, its levels are deregulated in AD.
Objective: The present study investigated the role of melatonin in regulating the APP-BP1 pathway under both physiological and pathological conditions to develop an understanding of the underlying mechanisms.
Methods: Therefore, human SH-SY5Y neuroblastoma cells were treated with various concentrations of Aβ42 to induce neurotoxic conditions comparable to AD.
Results: The results are the first to demonstrate that melatonin prevents Aβ42-induced enhancement of APP-BP1 protein expression and alteration in the cellular localization of NEDD8. Moreover, using MLN4924 (APP-BP1 pathway blocker), we also verified the components of the downstream effector cascade of the APP-BP1 pathway, including tau, APP-cleaving secretases, β-catenin and p53.
Conclusion: These findings indicate that melatonin regulates the interplay of molecular signaling associated with the APP-BP1 pathway and might preclude the pathogenic mechanisms occurring during disease development, thus providing a propitious therapeutic strategy for preventing AD.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.2174/1567205017666200624201356 | DOI Listing |
Curr Alzheimer Res
August 2021
Chulabhorn Graduate Institute, Chulabhorn Royal Academy, Bangkok 10210, Thailand.
Background: Amyloid Precursor Protein (APP)-Binding Protein 1 (APP-BP1) is a crucial regulator of many key signaling pathways and functions mainly as a scaffold protein to enhance molecular interactions and facilitate catalytic reactions. The interaction of APP-BP1 with Amyloid Precursor Protein (APP) plays a role in cell cycle transit control, which determines the mechanism behind the loss of cell cycle regulation in Alzheimer's Disease (AD). In contrast, neddylation, a posttranslational modification mediated by conjugation of ubiquitin-like protein neural precursor cell expressed developmentally downregulated protein 8 (NEDD8), is activated by a heterodimer composed of APP-BP1 and NEDD8-activating enzyme E1 catalytic subunit (Uba3).
View Article and Find Full Text PDFInt J Oncol
October 2012
EA3430, Laboratory for Tumor Biology, Paul Strauss Cancer Center, F-67065 Strasbourg Cedex, France.
Human papillomavirus (HPV)-related oropharyngeal cancer represents a distinct head and neck squamous cell carcinoma (HNSCC) subpopulation, with improved disease-free and overall survival. In general, HPV-positive HNSCCs express wild-type TP53, which could explain its increased radiosensitivity. However, the molecular mechanisms underlying this higher sensitivity remain elusive.
View Article and Find Full Text PDFJ Cell Mol Med
November 2012
Department of Geriatrics and Department of Neurobiology & Developmental Sciences, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA.
Ubiquitin-dependent proteolysis is a major mechanism that downregulates misfolded proteins or those that have finished a programmed task. In the last two decades, neddylation has emerged as a major regulatory pathway for ubiquitination. Central to the neddylation pathway is the amyloid precursor protein (APP)-binding protein APP-BP1, which together with Uba3, plays an analogous role to the ubiquitin-activating enzyme E1 in nedd8 activation.
View Article and Find Full Text PDFKorean J Physiol Pharmacol
August 2010
Department of Food and Nutrition, Kookmin University College of Natural Sciences, Seoul 136-702, Korea.
Amyloid precursor protein binding protein-1 (APP-BP1) binds to the carboxyl terminus of amyloid precursor protein and serves as a bipartite activation enzyme for the ubiquitin-like protein, NEDD8. Previously, it has been reported that APP-BP1 rescues the cell cycle S-M checkpoint defect in Ts41 hamster cells, that this rescue is dependent on the interaction of APP-BP1 with hUba3. The exogenous expression of APP-BP1 in neurons has been reported to cause DNA synthesis and apoptosis via a signaling pathway that is dependent on APP-BP1 binding to APP.
View Article and Find Full Text PDFInt J Cancer
April 2010
IGBMC, UMR 7104 CNRS UDS-U 964 INSERM, 1 Rue Laurent Fries, Illkirch Graffenstaden, France.
Human papillomaviruses (HPV) are associated with a subset of head and neck squamous cell carcinoma (HNSCC), particularly HPV16. This study analyzed the presence and genotype of high risk HPVs, viral DNA load and transcription of the E6/E7 mRNAs, in 231 consecutive HNSCC. Twelve out of 30 HPV16 DNA-positive tumors displayed high E6/E7 mRNAs levels and were localized in the oropharyngeal region.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!