Eliminating Fc N-Linked Glycosylation and Its Impact on Dosing Consideration for a Transferrin Receptor Antibody-Erythropoietin Fusion Protein in Mice.

Mol Pharm

Department of Biopharmaceutical Sciences, School of Pharmacy and Health Sciences, Keck Graduate Institute, Claremont, California 91711, United States.

Published: August 2020

Erythropoietin (EPO), a hematopoietic growth factor and a promising therapy for Alzheimer's disease, has low permeability across the blood-brain barrier. The transferrin receptor antibody fused to EPO (TfRMAb-EPO) is a chimeric monoclonal antibody that ferries EPO into the brain via the transvascular route. However, TfRMAbs have Fc-effector function-related adverse effects including reticulocyte suppression. To overcome this, we recently developed an effectorless TfRMAb-EPO fusion protein, designated TfRMAb-N292G-EPO, by eliminating the Fc N-linked glycosylation site at position 292 of the antibody heavy chain. The mutant fusion protein showed enhanced plasma clearance and dramatically reduced plasma concentrations compared with the wild-type (WT) nonmutant fusion protein. This increased clearance of the aglycosylated TfRMAb is expected to increase the injection dose of the mutant fusion protein. To provide a basis for future therapeutic uses of this IgG-neurotrophin fusion protein, the current study aimed to characterize the pharmacokinetic profile of this effectorless TfRMAb-N292G-EPO at different doses following different routes of administration in the mouse. Adult C57BL/6J male mice were injected with a single dose (3, 6, 9, or 20 mg/kg; = 3-6 per dose) of TfRMAb-N292G-EPO through either the subcutaneous (SQ) or intraperitoneal (IP) route. TfRMAb-N292G-EPO plasma concentrations were determined using an enzyme-linked immunosorbent assay. Mice were sacrificed 24 h after injection, and terminal blood was used for a complete blood count. Brain concentrations in the WT- and mutant fusion protein-treated mice were compared. We observed stark differences in the plasma pharmacokinetics of TfRMAb-N292G-EPO between the IP and SQ routes of administration. Dose escalation from 3 to 20 mg/kg increased the plasma only 3.5-fold for the SQ route, compared with a 35-fold increase for the IP route. The plasma was 15.0 ± 2.0, 21.3 ± 4.1, 21.3 ± 6.4, and 52.8 ± 27.9 ng/mL following SQ injection and 288 ± 47, 389 ± 154, 633 ± 194, and 10,066 ± 7059 ng/mL following IP injection for 3, 6, 9, and 20 mg/kg doses, respectively. The plasma following the SQ route was therefore 19- to 190-fold lower than that following the IP route. This finding is consistent with a 31-fold higher apparent clearance following the SQ route compared with the IP route at the highest dose administered. The brain concentrations in the mice treated with a 3 mg/kg dose of the mutant fusion protein were lower than those in the nonmutant WT-treated mice. No reticulocyte suppression was observed at the 3 mg/kg SQ dose of TfRMAb-N292G-EPO. However, reticulocyte suppression increased with an increase in dose and area under the plasma concentration-time curve (AUC) for both the IP and SQ routes. Overall, elimination of Fc N-linked glycosylation, to mitigate TfRMAb effector function side effects, has a profound effect on the plasma exposure of TfRMAb-N292G-EPO at therapeutic as well as high doses (3-20 mg/kg). This effect is more pronounced following SQ injection. The low plasma concentrations of the mutant fusion protein following a 3 mg/kg dose resulted in negligible brain uptake. The beneficial rescue of reticulocyte reduction by the N292G mutation is a function of AUC and is negated at high doses of the N292G mutant.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7466778PMC
http://dx.doi.org/10.1021/acs.molpharmaceut.0c00231DOI Listing

Publication Analysis

Top Keywords

fusion protein
32
mutant fusion
20
n-linked glycosylation
12
reticulocyte suppression
12
plasma concentrations
12
mg/kg dose
12
plasma
10
fusion
9
dose
9
eliminating n-linked
8

Similar Publications

Adipose-derived stem cells regulate mitochondrial dynamics to alleviate the aging of HFF-1 cells.

In Vitro Cell Dev Biol Anim

January 2025

Department of Outpatient Service, The Affiliated Nanhua Hospital, Hengyang Medical School, University of South China, Hengyang, 421002, Hunan, China.

The objective of this study is to explore how adipose-derived stem cells (ASCs) regulate mitochondrial structure and function and the impact of this regulation on slowing cellular senescence. HFF-1 cells were induced by HO to establish a cellular senescence model, and ASCs or Mdivi-1 (mitochondrial fission inhibitor) was added. MTT examined the cell proliferation; flow cytometry detected mitochondrial membrane potential as well as apoptosis and cell cycle; kit measured ATP production; ELISA analyzed the levels of interleukin-6 (IL-6), interleukin 1 beta (IL-1β), tumor necrosis factor alpha-like (TNF-α), glutathione (GSH), malondialdehyde (MDA), and superoxide dismutase (SOD); Western blotting and qRT-PCR detected the expression of protein and mRNA levels; and β-galactosidase staining observed the degree of cellular senescence.

View Article and Find Full Text PDF

Iron-sulfur clusters are essential metallocofactors synthesized by multiprotein machineries via an unclear multistep process. Here we report a step-by-step dissection of the [2Fe-2S] cluster assembly process by the Escherichia coli iron-sulfur cluster (ISC) assembly machinery using an in vitro reconstituted system and a combination of biochemical and spectroscopic techniques. We show that this process is initiated by iron binding to the scaffold protein IscU, which triggers persulfide insertion by the cysteine desulfurase IscS upon the formation of a complex with IscU.

View Article and Find Full Text PDF

Axonal fusion represents an efficient way to recover function after nerve injury. However, how axonal fusion is induced and regulated remains largely unknown. We discover that ferroptosis signaling can promote axonal fusion and functional recovery in C.

View Article and Find Full Text PDF

Cervical cancer is the fourth most common cancer and the fourth leading cause of cancer death in women. Effective treatment of cervical cancer is urgently needed. Tumor therapeutic vaccine is a research hotspot in tumor immunotherapy, and the tumor therapeutic vaccine based on attenuated live bacteria carrier has clinical application prospect because of its clear action site and high safety.

View Article and Find Full Text PDF

A Granzyme B-Cleavable T Cell-Targeted Bispecific Cell Vesicle Connector for Reversing New-Onset Type 1 Diabetes.

J Am Chem Soc

January 2025

State Key Laboratory of Advanced Drug Delivery and Release Systems, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China.

Type 1 diabetes (T1D) is an autoimmune disorder in which pancreatic β-cells are destroyed by CD8 T cells. Anti-CD3 antibody effectively treats early-stage T1D when β-cell autoantibodies are detected but before symptoms appear. However, it impairs the immune system temporarily, exposing individuals to infection.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!