With increasing frequency, humans are facing outbreaks of emerging infectious diseases (EIDs) with the potential to cause significant morbidity and mortality. In the most extreme instances, such outbreaks can become pandemics, as we are now witnessing with COVID-19. According to the World Health Organization, this new disease, caused by the novel coronavirus SARS-CoV-2, has already infected more than 10 million people worldwide and led to 499,913 deaths as of 29 June, 2020. How high these numbers will eventually go depends on many factors, including policies on travel and movement, availability of medical support, and, because there is no vaccine or highly effective treatment, the pace of biomedical research. Other than an approved antiviral drug that can be repurposed, monoclonal antibodies (mAbs) hold the most promise for providing a stopgap measure to lessen the impact of an outbreak while vaccines are in development. Technical advances in mAb identification, combined with the flexibility and clinical experience of mAbs in general, make them ideal candidates for rapid deployment. Furthermore, the development of mAb cocktails can provide a faster route to developing a robust medical intervention than searching for a single, outstanding mAb. In addition, mAbs are well-suited for integration into platform technologies for delivery, in which minimal components need to be changed in order to be redirected against a novel pathogen. In particular, utilizing the manufacturing and logistical benefits of DNA-based platform technologies in order to deliver one or more antiviral mAbs has the potential to revolutionize EID responses.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7473320 | PMC |
http://dx.doi.org/10.1080/22221751.2020.1787108 | DOI Listing |
In the context of Chinese clinical texts, this paper aims to propose a deep learning algorithm based on Bidirectional Encoder Representation from Transformers (BERT) to identify privacy information and to verify the feasibility of our method for privacy protection in the Chinese clinical context. We collected and double-annotated 33,017 discharge summaries from 151 medical institutions on a municipal regional health information platform, developed a BERT-based Bidirectional Long Short-Term Memory Model (BiLSTM) and Conditional Random Field (CRF) model, and tested the performance of privacy identification on the dataset. To explore the performance of different substructures of the neural network, we created five additional baseline models and evaluated the impact of different models on performance.
View Article and Find Full Text PDFBioanalysis
January 2025
Eli Lilly and Company, Indianapolis, IN, USA.
The 18th Workshop on Recent Issues in Bioanalysis (18th WRIB) took place in San Antonio, TX, USA on May 6-10, 2024. Over 1100 professionals representing pharma/biotech companies, CROs, and multiple regulatory agencies convened to actively discuss the most current topics of interest in bioanalysis. The 18th WRIB included 3 Main Workshops and 7 Specialized Workshops that together spanned 1 week to allow an exhaustive and thorough coverage of all major issues in bioanalysis of biomarkers, immunogenicity, gene therapy, cell therapy and vaccines.
View Article and Find Full Text PDFJ Integr Neurosci
January 2025
Department of Radiology, Huzhou Central Hospital, The Affiliated Central Hospital of Huzhou University, 313000 Huzhou, Zhejiang, China.
Background: Glioma is the most common malignancy in the central nervous system. Even with optimal therapies, glioblastoma (the most aggressive form of glioma) is incurable, with only 26.5% of patients having a 2-year survival rate.
View Article and Find Full Text PDFViruses
January 2025
Laboratory of Infectious Diseases, College of Veterinary Medicine, Chungnam National University, Daejeon 34134, Republic of Korea.
Self-assembling ferritin nanoparticle technology is a widely used vaccine development platform for enhancing the efficacy of subunit vaccines by displaying multiple antigens on nanocages. The dengue virus (DENV) envelope domain III (EDIII) protein, the most promising antigen for DENV, has been applied in vaccine development, and it is essential to evaluate the relative immunogenicity of the EDIII protein and EDIII-conjugated ferritin to show the efficiency of the ferritin delivery system compared with EDIII. In this study, we optimized the conditions for the expression of the EDIII protein in , protein purification, and refolding, and these optimization techniques were applied for the purification of EDIII ferritin nanoparticles.
View Article and Find Full Text PDFViruses
December 2024
Beijing Youcare Kechuang Pharmaceutical Technology Co., Ltd., Beijing 100176, China.
Human respiratory syncytial virus (RSV) remains a significant global health threat, particularly for vulnerable populations. Despite extensive research, effective antiviral therapies are still limited. To address this urgent need, we present AVP-GPT2, a deep-learning model that significantly outperforms its predecessor, AVP-GPT, in designing and screening antiviral peptides.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!