Thermal proteome profiling is a powerful energetic-based chemical proteomics method to reveal the ligand-protein interaction. However, the costly multiplexed isotopic labeling reagent, mainly Multiplexed isobaric tandem mass tag (TMT), and the long mass spectrometric time limits the wide application of this method. Here a simple and cost-effective strategy by using dimethyl labeling technique instead of TMT labeling is reported to quantify proteins and by using the peptides derived from the same protein to determine significantly changed proteins in one LC-MS run. This method is validated by identifying the known targets of methotrexate and geldanamycin. In addition, several potential off-targets involved in detoxification of reactive oxygen species pathway are also discovered for geldanamycin. This method is further applied to map the interactome of adenosine triphosphate (ATP) in the 293T cell lysate by using ATP analogue, adenylyl imidodiphosphate (AMP-PNP), as the ligand. As a result, a total of 123 AMP-PNP-sensitive proteins are found, of which 59 proteins are stabilized by AMP-PNP. Approximately 53% and 20% of these stabilized candidate protein targets are known as ATP and RNA binding proteins. Overall, above results demonstrated that this approach could be a valuable platform for the unbiased target proteins identification with reduced reagent cost and mass spectrometric time.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/pmic.201900372 | DOI Listing |
Environ Int
December 2024
Department of Molecular Toxicology, Helmholtz-Centre for Environmental Research GmbH (UFZ), Leipzig, Germany.
Despite all debates about its safe use, glyphosate remains the most widely applied active ingredient in herbicide products, with renewed approval in the European Union until 2033. Non-target organisms are commonly exposed to glyphosate as a matter of its mode of application, with its broader environmental and biological impacts remaining under investigation. Glyphosate displays structural similarity to phosphoenolpyruvate (PEP), thereby competitively inhibiting the 5-enolpyruvylshikimate-3-phosphate synthase (EPSPS), crucial for the synthesis of aromatic amino acids in plants, fungi, bacteria, and archaea.
View Article and Find Full Text PDFComp Biochem Physiol Part D Genomics Proteomics
December 2024
Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi, PR China. Electronic address:
Temperature is an environmental parameter that remarkably affects the survival and organism health of poikilothermal animal-Whitmania pigra Whitman. Heat stress destroys the physiological homeostasis of intestine tissue. However, no studies on the intestinal mucosa response of leech exposure to heat stress have been reported so far.
View Article and Find Full Text PDFProteomes
November 2024
Department of Aquatic Bioscience, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1, Yayoi, Bunkyo-ku, Tokyo 113-865, Japan.
Sous vide, a cooking method that involves vacuum-sealed fish at low temperatures, yields a uniquely tender, easily flaked texture. Previous research on sous-vide tenderization has focused on thermal protein denaturation. On the other hand, the contribution of proteases, activated at low temperatures in fish meat, has been suggested.
View Article and Find Full Text PDFBrain Behav Immun
December 2024
Department of Anesthesiology, the Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, Guangdong Province 510630, China. Electronic address:
Glial cell-induced neuroinflammation in the spinal cord is the critical pathology underlying complete Freund's adjuvant (CFA)-induced inflammatory pain. Previously, we showed that spinal glial cells undergo ferroptosis after CFA injection, which may contribute to the development of neuroinflammation and inflammatory pain. However, the mechanism underlying the occurrence of ferroptosis during inflammatory pain remains unclear.
View Article and Find Full Text PDFAnal Chem
December 2024
V.L. Talrose Institute for Energy Problems of Chemical Physics, N.N. Semenov Federal Research Center for Chemical Physics, Russian Academy of Sciences, 119334 Moscow, Russia.
In this Letter, a two-term formalism for constructing protein solubility curves in thermal proteome profiling (TPP) is considered, which takes into account the efficiency of the drug-protein binding reaction. When the reaction is incomplete, this results in distortion of the otherwise sigmoidal shape of the curve after drug treatment, which is often observed in experiments. This distortion may be significant enough to disqualify the corresponding protein from the list of drug target candidates, thus negatively affecting the results of TPP data analysis.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!