A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Nutrient enrichment increases size of Zostera marina shoots and enriches for sulfur and nitrogen cycling bacteria in root-associated microbiomes. | LitMetric

AI Article Synopsis

  • Seagrasses, like eelgrass (Zostera marina), are crucial for coastal ecosystems and work closely with microbial communities that enhance ecosystem services.
  • A study observed the effects of fertilization on eelgrass over four weeks, revealing increased leaf growth and changes in microbiome structure, particularly a rise in sulfur and nitrogen bacteria.
  • The findings suggest that nutrient enrichment might boost belowground biogeochemical cycling but could also lead to higher sulfide toxicity in sediments, jeopardizing future carbon storage.

Article Abstract

Seagrasses are vital coastal ecosystem engineers, which are mutualistically associated with microbial communities that contribute to the ecosystem services provided by meadows. The seagrass microbiome and sediment microbiota play vital roles in belowground biogeochemical and carbon cycling. These activities are influenced by nutrient, carbon and oxygen availability, all of which are modulated by environmental factors and plant physiology. Seagrass meadows are increasingly threatened by nutrient pollution, and it is unknown how the seagrass microbiome will respond to this stressor. We investigated the effects of fertilization on the physiology, morphology and microbiome of eelgrass (Zostera marina) cultivated over 4 weeks in mesocosms. We analyzed the community structure associated with eelgrass leaf, root and rhizosphere microbiomes, and of communities from water column and bulk sediment using 16S rRNA amplicon sequencing. Fertilization led to a higher number of leaves compared with that of eelgrass kept under ambient conditions. Additionally, fertilization led to enrichment of sulfur and nitrogen bacteria in belowground communities. These results suggest nutrient enrichment can stimulate belowground biogeochemical cycling, potentially exacerbating sulfide toxicity in sediments and decreasing future carbon sequestration stocks.

Download full-text PDF

Source
http://dx.doi.org/10.1093/femsec/fiaa129DOI Listing

Publication Analysis

Top Keywords

nutrient enrichment
8
zostera marina
8
sulfur nitrogen
8
seagrass microbiome
8
belowground biogeochemical
8
fertilization led
8
nutrient
4
enrichment increases
4
increases size
4
size zostera
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!