Autism spectrum condition (ASC) is a complex set of behavioral and neurological responses reflecting a likely interaction between autism susceptibility genes and the environment. Autism represents a spectrum in which heterogeneous genetic backgrounds are expressed with similar heterogeneity in the affected domains of communication, social interaction, and behavior. The impact of gene-environment interactions may also account for differences in underlying neurology and wide variation in observed behaviors. For these reasons, it has been difficult for geneticists and neuroscientists to build adequate systems to model the complex neurobiology causes of autism. In addition, the development of therapeutics for individuals with autism has been painstakingly slow, with most treatment options reduced to repurposed medications developed for other neurological diseases. Adequately developing therapeutics that are sensitive to the genetic and neurobiological diversity of individuals with autism necessitates personalized models of ASC that can capture some common pathways that reflect the neurophysiological and genetic backgrounds of varying individuals. Testing cohorts of individuals with and without autism for these potentially convergent pathways on a scalable platform for therapeutic development requires large numbers of samples from a diverse population. To date, human induced pluripotent stem cells (iPSCs) represent one of the best systems for conducting these types of assays in a clinically relevant and scalable way. The discovery of the four Yamanaka transcription factors (OCT3/4, SOX2, c-Myc, and KLF4) [1] allows for the induction of iPSCs from fibroblasts [2], peripheral blood mononuclear cells (PBMCs, i.e. lymphocytes and monocytes) [3, 4], or dental pulp cells [5] that retain the original genetics of the individual from which they were derived [6], making iPSCs a powerful tool to model neurophysiological conditions. iPSCs are a readily renewable cell type that can be developed on a small scale for boutique-style proof-of-principle phenotypic studies and scaled to an industrial level for drug screening and other high-content assays. This flexibility, along with the ability to represent the true genetic diversity of autism, underscores the importance of using iPSCs to model neurophysiological aspects of ASC.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/978-3-030-45493-7_10 | DOI Listing |
Psychiatry Clin Neurosci
January 2025
Institute of Brain Science, National Yang Ming Chiao Tung University, Taipei, Taiwan.
Aim: Autistic traits exhibit neurodiversity with varying behaviors across developmental stages. Brain complexity theory, illustrating the dynamics of neural activity, may elucidate the evolution of autistic traits over time. Our study explored the patterns of brain complexity in autistic individuals from childhood to adulthood.
View Article and Find Full Text PDFDiagnostics (Basel)
December 2024
Genetics Department, Hospital Sant Joan de Déu, Member of ERN-ITHACA, 08950 Esplugues de Llobregat, Spain.
: duplication syndrome (MDS) (MIM#300260) is a rare X-linked neurodevelopmental disorder. This study aims to (1) develop a specific clinical severity scale, (2) explore its correlation with clinical and molecular variables, and (3) automate diagnosis using the Face2gene platform. : A retrospective study was conducted on genetically confirmed MDS patients who were evaluated at a pediatric hospital between 2012 and 2024.
View Article and Find Full Text PDFBrain Res
January 2025
Department of Chemistry and Biochemistry, Ohio University, Athens, OH, United States. Electronic address:
Autism spectrum disorder, or autism, is a neurodevelopmental disorder of the developing child's brain with a genetic causality. It can be diagnosed at about three years after birth when it begins to present itself via a range of neuropsychiatric symptoms. Nitric oxide is a crucial small molecule of life synthesized within cells of our body systems, including cells of our brain.
View Article and Find Full Text PDFRes Dev Disabil
January 2025
Child and Adolescent Neuropsychiatry Unit, Bambino Gesù Children's Hospital (IRCCS), Rome 00146, Italy. Electronic address:
Atypical executive functions (EFs) are well-documented in individuals with autism spectrum disorders (ASD) across all ages. However, most research focuses on EFs impairments in school-aged children and older, with less attention to preschool children. Understanding EF deficits in this age group is challenging and underexplored due to limited studies and measurement difficulties.
View Article and Find Full Text PDFJ Child Adolesc Psychopharmacol
January 2025
Division of Child and Adolescent Psychiatry, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA.
Autism spectrum disorder (ASD) is characterized by deficits in social behavior and executive function (EF), particularly in cognitive flexibility. Whether transcranial magnetic stimulation (TMS) can improve cognitive outcomes in patients with ASD remains an open question. We examined the acute effects of prefrontal TMS on cortical excitability and fluid cognition in individuals with ASD who underwent TMS for refractory major depression.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!