Trace metal contamination is among the major concerns of stakeholders due to its potential adverse effects on biota and humans, even at low concentrations. Few studies have recently focused on the ability of organisms to depurate trace metals from different tissues. Therefore, we carried out this study to evaluate the bioconcentration of trace metals (Cd, Zn, Pb, Ni, Mn, Fe, Cr, Cu) and the depuration process of these pollutants in two tissues (soft tissue and carapace) in an estuarine benthic crab model, Neohelice granulata. The results indicate that Cu and Zn were the highest bioconcentrated metals in crab tissues, while other metals, such as Pb and Cr, were found in sediments but were not bioconcentrated. On the other hand, Cd was found in crabs but not in sediments. The depuration indicates a total decline in Ni and a significant decrease in Cu and Fe in the soft tissues after the experiment. However, the concentration of the trace metals in the carapace before and after the depuration did not show any significant variation except in the Mn, in which the levels decreased significantly at the end of the depuration. Thus, we recommend continuing to explore metal detoxification in bioindicator species, such as N. granulata, in order to understand the efficiency of the mechanisms of depuration of trace metals.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s11356-020-09776-z | DOI Listing |
ACS Nano
January 2025
Department of Anesthesiology and Surgical Intensive Care Unit, Xinhua Hospital, School of Medicine and School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai 200030, People's Republic of China.
Identifying effective biomarkers has long been a persistent need for early diagnosis and targeted therapy of disease. While mass spectrometry-based label-free proteomics with trace cell has been demonstrated, deep proteomics with ultratrace human biofluid remains challenging due to low protein concentration, extremely limited patient sample volume, and substantial protein contact losses during preprocessing. Herein, we proposed and validated lanthanide metal-organic framework flowers (MOF-flowers), as effective materials, to trap and enrich protein in biofluid jointly through cation-π interaction and O-Ln coordination.
View Article and Find Full Text PDFInt J Legal Med
January 2025
Biological and Life Sciences, School of Arts and Sciences, Ahmedabad University, Central Campus, Navrangpura, Ahmedabad, Gujarat, India.
Polymerase Chain Reaction (PCR) has transformed forensic DNA analysis but is still limited when dealing with compromised trace or inhibitor-containing samples. Nanotechnology has been integrated into nanoPCR (nanoparticle-assisted PCR) to overcome these obstacles. Nanomaterials improve PCR sensitivity, selectivity, and efficiency.
View Article and Find Full Text PDFJ Trace Elem Med Biol
November 2024
Department of Toxicology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran. Electronic address:
Cadmium (Cd) is a highly toxic heavy metal contaminant found in soil and water due to human activities such as mining and industrial discharge. Cd can accumulate in the body, leading to various health risks such as organ injuries, osteoporosis, renal dysfunction, Type 2 diabetes (T2DM), reproductive diseases, hypertension, cardiovascular diseases, and cancers. The gut is particularly sensitive to Cd toxicity as it acts as the primary barrier against orally ingested Cd.
View Article and Find Full Text PDFMikrochim Acta
January 2025
Department of General Surgery, Qilu Hospital (Qingdao), Cheeloo College of Medicine, Shandong University, Qingdao, 266035, China.
A lateral flow assay (LFA) was developed for the simultaneous or separate detection of mercury ion and silver ion based on isothermal nucleic acid amplification. T-Hg-T and C-Ag-C were utilized in the isothermal nucleic acid amplification strategy to form specific complementary base pairs. Under the action of KF polymerase and endonuclease Nt.
View Article and Find Full Text PDFCrit Rev Anal Chem
January 2025
Department of Oral & Maxillofacial Surgery and Diagnostic Sciences, Faculty of Dentistry, Taif University, Taif, Saudi Arabia.
Organic fluorescence and colorimetric probes have emerged as vital tools for detecting metal ions, due to their high sensitivity, selectivity, and rapid response times. Copper, an essential trace element, plays a critical role in biological systems, yet its imbalance can lead to severe disorders such as neurodegenerative diseases, cancer, and Wilson's disease. Over the past few years, advancements in probe design have unlocked innovative avenues for not only detecting Cu in environmental and biological samples but also for visualizing its distribution through fluorescence imaging.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!