Although mTORC1 negatively regulates autophagy in cultured cells, how autophagy impacts mTORC1 signaling, in particular in vivo, is less clear. Here we show that autophagy supports mTORC1 hyperactivation in NSCs lacking Tsc1, thereby promoting defects in NSC maintenance, differentiation, tumourigenesis, and the formation of the neurodevelopmental lesion of Tuberous Sclerosis Complex (TSC). Analysing mice that lack Tsc1 and the essential autophagy gene Fip200 in NSCs we find that TSC-deficient cells require autophagy to maintain mTORC1 hyperactivation under energy stress conditions, likely to provide lipids via lipophagy to serve as an alternative energy source for OXPHOS. In vivo, inhibition of lipophagy or its downstream catabolic pathway reverses defective phenotypes caused by Tsc1-null NSCs and reduces tumorigenesis in mouse models. These results reveal a cooperative function of selective autophagy in coupling energy availability with TSC pathogenesis and suggest a potential new therapeutic strategy to treat TSC patients.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7311104 | PMC |
http://dx.doi.org/10.1038/s42255-019-0137-5 | DOI Listing |
Acta Neuropathol Commun
January 2025
Department of Neurology, Peking Union Medical College Hospital, Peking Union Medical College (PUMC) and Chinese Academy of Medical Science (CAMS), Beijing, China.
Mutations in the ANXA11 gene, encoding an RNA-binding protein, have been implicated in the pathogenesis of amyotrophic lateral sclerosis (ALS), but the underlying in vivo mechanisms remain unclear. This study examines the clinical features of ALS patients harboring the ANXA11 hotspot mutation p.P36R, characterized by late-onset motor neuron disease and occasional multi-system involvement.
View Article and Find Full Text PDFPLoS Pathog
January 2025
Key Laboratory of Medical Molecular Virology (MOE/NHC/CAMS), Shanghai Institute of Infectious Disease and Biosecurity, School of Basic Medical Sciences, Fudan University, Shanghai, China.
Sodium taurocholate co-transporting polypeptide (NTCP) has been identified as an entry receptor for hepatitis B virus (HBV), but the molecular events of the viral post-endocytosis steps remain obscure. In this study, we discovered that manganese (Mn) could strongly inhibit HBV infection in NTCP-reconstituted HepG2 cells without affecting viral replication. We therefore profiled the antiviral effects of Mn2+ in an attempt to elucidate the regulatory mechanisms involved in early HBV infection.
View Article and Find Full Text PDFDev Cell
December 2024
Institut Curie, CNRS UMR 144, PSL University, 75005 Paris, France. Electronic address:
The phosphatidylinositol 3-kinase (PI3K)/AKT/mammalian target of rapamycin (mTOR) pathway is frequently hyperactivated in triple-negative breast cancers (TNBCs) associated with poor prognosis and is a therapeutic target in breast cancer management. Here, we describe the effects of repression of mTOR-containing complex 1 (mTORC1) through knockdown of several key mTORC1 components or with mTOR inhibitors used in cancer therapy. mTORC1 repression results in an ∼10-fold increase in extracellular matrix proteolytic degradation.
View Article and Find Full Text PDFbioRxiv
December 2024
Division of Pulmonary, Critical Care, and Sleep Medicine, Department of Internal Medicine, University of Cincinnati; Cincinnati, OH 45267, USA.
Lymphangioleiomyomatosis (LAM) is a cystic lung disease that primarily affects women. LAM is caused by the invasion of metastatic smooth muscle-like cells into the lung parenchyma, leading to abnormal cell proliferation, lung remodeling and progressive respiratory failure. LAM cells have TSC gene mutations, which occur sporadically or in people with Tuberous Sclerosis Complex.
View Article and Find Full Text PDFMol Biol Cell
January 2025
Department of Microbiology, Immunology, and Cancer Biology, University of Virginia School of Medicine, Charlottesville, VA 22903.
serovar Typhimurium is a Gram-negative bacillus that infects the host intestinal epithelium and resident macrophages. Many intracellular pathogens induce an autophagic response in host cells but have evolved mechanisms to subvert that response. Autophagy is closely linked to cellular cholesterol levels; mTORC1 senses increased cholesterol in lysosomal membranes, leading to its hyperactivity and suppression of autophagy.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!