TET1 promotes fatty acid oxidation and inhibits NAFLD progression by hydroxymethylation of PPARα promoter.

Nutr Metab (Lond)

Department of Digestive Diseases of Huashan Hospital and Institutes of Biomedical Sciences, Fudan University, Shanghai, China.

Published: June 2020

Background: As a lipid metabolic disorder, non-alcoholic fatty liver disease (NAFLD) is an important cause of cirrhosis and hepatocellular carcinoma, with no effective drug up to date. Previous studies have demonstrated increased methylation levels of key genes in NAFLD, suggesting that hydroxymethylation, a key step in demethylation, may be a possible strategy to reverse NAFLD. TET1 is well known as a key hydroxymethylase, however, its role and mechanism in NAFLD remains unclear.

Methods: In this study, we utilized TET1 knockout mice, fed with high-fat diet. Furthermore, by ChIP and hMeDIP. TET1 knockdown L02 and HepG2 cell lines.

Results: Their degree of liver steatosis was more severe than that of wild-type mice, suggesting that TET1 had a significant protective effect against NAFLD. We further found that PPARα, a key regulator of fatty acid oxidation, and its downstream key enzymes ACOX1 and CPT1A, as well as the fatty acid oxidation product β-HB were significantly decreased in TET1 knockout mice. While the key genes for fatty acid synthesis and uptake were not significantly changed, suggesting that TET1 inhibits NAFLD by promoting fatty acid oxidation via PPARα pathway. TET1 was confirmed to directly bind to the promoter of PPARα and elevate its hydroxymethylation level.

Conclusions: This study is the first to show that TET1 can activate PPARα, promote fatty acid oxidation and inhibit NAFLD progression by hydroxymethylation of PPARα promoter, which may be a new strategy to reverse NAFLD.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7304222PMC
http://dx.doi.org/10.1186/s12986-020-00466-8DOI Listing

Publication Analysis

Top Keywords

fatty acid
24
acid oxidation
20
tet1
9
nafld
9
inhibits nafld
8
nafld progression
8
progression hydroxymethylation
8
hydroxymethylation pparα
8
pparα promoter
8
key genes
8

Similar Publications

Prebiotics, traditionally linked to gut health, are increasingly recognized for their systemic benefits, influencing multiple organ systems through interactions with the gut microbiota. Compounds like inulin, fructooligosaccharides (FOS), and galactooligosaccharides (GOS) enhance short-chain fatty acid (SCFA) production, benefiting neurocognitive health, cardiovascular function, immune modulation, and skin integrity. Advances in biotechnology, including deep eutectic solvents (DES) for extraction and machine learning (ML) for personalized formulations, have expanded prebiotic applications.

View Article and Find Full Text PDF

Abdominal LIPUS Stimulation Prevents Cognitive Decline in Hind Limb Unloaded Mice by Regulating Gut Microbiota.

Mol Neurobiol

January 2025

Center for Biomedical Engineering, School of Information Science and Technology, Fudan University, Shanghai, 200433, China.

Weightlessness usually causes disruption of the gut microbiota and impairs cognitive function. There is a close connection between gut microbiota and neurological diseases. Low-intensity pulsed ultrasound (LIPUS) has a beneficial effect on reducing intestinal inflammation.

View Article and Find Full Text PDF

Exaggerated neuronal excitation by glutamate is a well-known cause of excitotoxicity, a key factor in numerous neurodegenerative disorders. This study examined the neurotoxic effect of monosodium glutamate (MSG) in the brain cortex of rats and focused on assessing the potential neuroprotective effects of omega-3 polyunsaturated fatty acids (ω-3 PUFAs). Four groups of adult male rats (n = 10) were assigned as follows; normal control, ω-3 PUFAs (400 mg/kg) alone, MSG (4 mg/g) alone, and MSG plus ω-3 PUFAs (4 mg/g MSG plus 400 mg/kg ω-3 PUFAs).

View Article and Find Full Text PDF

sp. nov., isolated from the faecal sample of a zoo animal, .

Int J Syst Evol Microbiol

January 2025

Laboratory of Molecular Environmental Microbiology, Department of Environmental Science and Ecological Engineering, Korea University, Seoul 02841, Republic of Korea.

Strain NoAH (=KACC 23135=JCM 35999), a novel Gram-negative, motile bacterium with a rod-shaped morphology, was isolated from the zoo animal faecal samples, specifically the long-tailed goral species . The novel bacterial strain grew optimally in a nutrient broth medium under the following conditions: 1-2% (w/v) NaCl, pH 7-8 and 30 °C. The strain NoAH exhibited high tolerance to NaCl, with the ability to tolerate up to 7% (w/v) NaCl.

View Article and Find Full Text PDF

Stereoselective Reaction Enabling Simultaneous Analysis of Carbon-Carbon Double-Bond Configuration and the Position of Monounsaturated Fatty Acids through UHPLC-ESI-MRM-MS.

Anal Chem

January 2025

Beijing National Laboratory for Molecular Sciences, CAS Research/Education Center for Excellence in Molecular Sciences, Key Laboratory of Analytical Chemistry for Living Biosystems, Beijing Mass Spectrum Center, Institute of Chemistry Chinese Academy of Sciences, Beijing 100190, China.

Monounsaturated fatty acids (MUFA) are an important class of nutrients and are involved in lipid metabolism. The positions of the C=C bond and cis-trans isomerism have a significant influence on their physiological activity. However, simultaneously detecting these two structural properties has been challenging due to multiple isomers of MUFA.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!