High-diversity genetically-encoded combinatorial libraries (10-10 members) are a rich source of peptide-based binding molecules, identified by affinity selection. Synthetic libraries can access broader chemical space, but typically examine only ~ 10 compounds by screening. Here we show that in-solution affinity selection can be interfaced with nano-liquid chromatography-tandem mass spectrometry peptide sequencing to identify binders from fully randomized synthetic libraries of 10 members-a 100-fold gain in diversity over standard practice. To validate this approach, we show that binders to a monoclonal antibody are identified in proportion to library diversity, as diversity is increased from 10-10. These results are then applied to the discovery of p53-like binders to MDM2, and to a family of 3-19 nM-affinity, α/β-peptide-based binders to 14-3-3. An X-ray structure of one of these binders in complex with 14-3-3σ is determined, illustrating the role of β-amino acids in facilitating a key binding contact.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7311396PMC
http://dx.doi.org/10.1038/s41467-020-16920-3DOI Listing

Publication Analysis

Top Keywords

affinity selection
8
synthetic libraries
8
binders
6
ultra-large chemical
4
libraries
4
chemical libraries
4
libraries discovery
4
discovery high-affinity
4
high-affinity peptide
4
peptide binders
4

Similar Publications

Preparation of Octacalcium Phosphate Thin Film with Exposing Reactive Crystalline Plane in Biological Fluid.

ACS Biomater Sci Eng

January 2025

Department of Materials Science and Bioengineering, Nagaoka University of Technology, Kamitomioka 1603-1, Nagaoka, Niigata 940-2188, Japan.

Octacalcium phosphate (OCP) has been used as a bone replacement material due to its higher bone affinity. However, the mechanism of affinity has not been clarified. Since the 100 crystalline plane of OCP is closely involved in the biological reactions during osteogenesis, it is important to expose the 100 crystalline plane of OCP to the biological fluid to precisely measure the interfacial reactions.

View Article and Find Full Text PDF

Pharmacological Characterization of the Novel Selective Kappa Opioid Receptor Agonists 10-Iodo-Akuammicine and 10-Bromo-Akuammicine in Mice.

Neuropharmacology

January 2025

Center for Substance Abuse Research, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, USA. Electronic address:

Akuammicine (AKC), an indole alkaloid, is a kappa opioid receptor (KOR) full agonist with a moderate affinity. 10-Iodo-akuammicine (I-AKC) and 10-Bromo-akuammicine (Br-AKC) showed higher affinities for the KOR with K values of 2.4 and 5.

View Article and Find Full Text PDF

Ligand interaction landscape of transcription factors and essential enzymes in E. coli.

Cell

January 2025

Program in Bioinformatics, Boston University, Boston, MA 02215, USA; Department of Molecular Genetics, University of Toronto, Toronto, ON M5S 1A8, Canada; Center for Network Systems Biology, Boston University, Boston, MA 02218, USA; Department of Chemistry, Boston University, Boston, MA 02215, USA; Department of Chemical Physiology and Biochemistry, Division of Oncological Sciences, Knight Cancer Institute, Oregon Health and Science University, Portland, OR, USA. Electronic address:

Knowledge of protein-metabolite interactions can enhance mechanistic understanding and chemical probing of biochemical processes, but the discovery of endogenous ligands remains challenging. Here, we combined rapid affinity purification with precision mass spectrometry and high-resolution molecular docking to precisely map the physical associations of 296 chemically diverse small-molecule metabolite ligands with 69 distinct essential enzymes and 45 transcription factors in the gram-negative bacterium Escherichia coli. We then conducted systematic metabolic pathway integration, pan-microbial evolutionary projections, and independent in-depth biophysical characterization experiments to define the functional significance of ligand interfaces.

View Article and Find Full Text PDF

The Acinetobacter baumannii is a member of the "ESKAPE" bacteria responsible for many serious multidrug-resistant (MDR) illnesses. This bacteria swiftly adapts to environmental cues leading to the emergence of multidrug-resistant variants, particularly in hospital/medical settings. In this work, we have demonstrated the outer membrane protein 33-36 (Omp33-36) porin as a potential therapeutic target in A.

View Article and Find Full Text PDF

Lassa fever (LF), a viral hemorrhagic fever disease with a case fatality rate that can be over 20% among hospitalized LF patients, is endemic to many West African countries. Currently, no vaccines or therapies are specifically licensed to prevent or treat LF, hence the significance of developing therapeutics against the mammarenavirus Lassa virus (LASV), the causative agent of LF. We used in silico docking approaches to investigate the binding affinities of 2015 existing drugs to LASV proteins known to play critical roles in the formation and activity of the virus ribonucleoprotein complex (vRNP) responsible for directing replication and transcription of the viral genome.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!