Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7322035 | PMC |
http://dx.doi.org/10.1073/pnas.2005584117 | DOI Listing |
Environ Res
January 2025
Linze Inland River Basin Research Station, Key Laboratory of Ecohydrology of Inland River Basin, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou, Gansu, 730000, China; University of Chinese Academy of Sciences, Beijing, 100049, China.
Understanding the responses of desert microbial communities to escalating precipitation changes is a significant knowledge gap in predicting future soil health and ecological function. Through a five-year precipitation manipulation experiment, we investigated the contrasting eco-evolutionary processes of desert bacteria and fungi that manifested in changes to the assembly and potential functions of the soil microbiome. Elevated precipitation increased the alpha diversity and network complexity of bacteria and fungi, proportion of non-dominant phyla, and abundance of carbon- and nitrogen-fixing bacteria and saprophytic, symbiotic, and pathogenic fungi.
View Article and Find Full Text PDFEnviron Int
January 2025
National Center for Chronic and Noncommunicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China. Electronic address:
The disease burden of air pollution (AP) has been well-documented, yet few studies have explored its economic burden. Retrieving disease burden data from the Global Burden of Diseases, Injuries, and Risk Factors Study (GBD) 2021, this study constructed a cost-of-illness (COI) model to estimate China's economic burden of AP in 1990 and 2021 and to identify national and provincial differences, then, an age-period-cohort (APC) model was adopted to estimate trends to 2050. Results demonstrated a serious load of AP, emphasizing the necessity for intervention.
View Article and Find Full Text PDFJ Hazard Mater
January 2025
Shanghai Municipal Institute of Surveying and Mapping, Shanghai, 200063, China.
Inland waters face multiple threats from human activities and natural factors, leading to frequent water quality issues, particularly the significant challenge of eutrophication. Hyperspectral remote sensing provides rich spectral information, enabling timely and accurate assessment of water quality status and trends. To address the challenge of inaccurate water quality mapping, we propose a novel deep learning framework for multi-parameter estimation from hyperspectral imagery.
View Article and Find Full Text PDFSci Rep
January 2025
Business School, Hebei University of Economics and Business, Shijiazhuang, 050062, China.
The development and implementation of county carbon control action plans in the Yellow River Basin (YRB) are crucial for realizing the "dual carbon" goals and modernizing national governance. Utilizing remote sensing data from 2001 to 2020, this study constructs a light-carbon conversion model and a carbon footprint model to simulate the carbon footprint of county energy consumption in the YRB. Employing spatial autocorrelation and spatial Durbin models, the study examines the temporal-spatial evolution characteristics and spatial effect mechanism.
View Article and Find Full Text PDFWater Res
January 2025
State Key Laboratory of Black Soils Conservation and Utilization, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun 130102, China.
Cyanobacterial blooms are increasingly becoming major threats to global inland aquatic ecosystems. Phycocyanin (PC), a pigment unique to cyanobacteria, can provide important reference for the study of cyanobacterial blooms warning. New satellite technology and cloud computing platforms have greatly improved research on PC, with the average number of studies examining it having increased from 5 per year before 2018 to 17 per year thereafter.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!