Herein, the effectiveness of an itaconic acid (IA) graft copolymer on native corn starch (NCS) as a filter control agent in fresh water-based drilling fluids (WBDFs) was evaluated. The copolymer (S--IA_APS) was synthesized by conventional radical dispersion polymerization using the redox initiation system (NH)SO/NaHSO. The modification of the starches was verified by volumetry, Fourier transform infrared spectroscopy (FTIR), thermogravimetric analysis (TGA), and scanning electron microscopy (SEM). Then, three WBDFs were formulated in which only the added polymer (NCS, S--IA_APS, and a commercial starch (CPS)) was varied to control the fluid losses. The physico-chemical, rheological, and filtering properties of the formulated systems were evaluated in terms of density (ρ), pH, plastic viscosity (µ), apparent viscosity (µ), yield point (Y), gel strength (R), and filtrated volume (V). In order to evaluate the resistance to temperature and contaminants of the WBDFs, they were subjected to high pressure and high temperature filtering (V). The filter control agents were also subjected to aging and contamination with cement and salt. The S--IA_APS addition improved the filtering behavior at a high pressure and temperature by 38%.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7345978 | PMC |
http://dx.doi.org/10.3390/ma13122794 | DOI Listing |
ACS Omega
January 2025
School of Petroleum Engineering, China University of Petroleum (East China), Qingdao 266580, P. R. China.
For the purpose of efficient temporary plugging and self-removal of the plugging of reservoir formations, the thermally induced expandable and acid-generating temporary plugging agent (TAPA) was prepared with acrylonitrile (AN), methacrylic acid (MAA), ,-dimethylacrylamide (DMAA), and butyl acrylate (BA) as the shell monomers as well as the carboxylate esters with high boiling points as the core material. The TAPA was structurally characterized, and the properties were studied. The results showed that the TAPA had a good spherical structure with a median particle size (D50) of 16.
View Article and Find Full Text PDFACS Omega
January 2025
Department of Metallurgy & Materials Engineering, Mehran University of Engineering and Technology, Jamshoro, Sindh 76062, Pakistan.
For optimizing the drilling efficiency, nanoparticles (NPs) specifically nanometal oxides have been used in water-based drilling fluids (WBDF). Nano metal oxides improve the rheological and filtration characteristics of the WBDF. However, dispersion instability among pristine nano metals shrinks the performance of the nanometal oxides due to high surface energy.
View Article and Find Full Text PDFHeliyon
January 2025
Department of Chemical Engineering, School of Chemical and Materials Engineering (SCME), National University of Sciences & Technology (NUST), Sector H-12, Islamabad, 44000, Pakistan.
This study examines the viability of using graphitic-Carbon Nitride (g-CN) nanomaterial as shale stabilizer drilling fluid additive having applications in the oil and gas wells drilling. Shale stability is important especially when drilling horizontal and extended reach wells with water-based muds (WBM) to tap unconventional reservoirs namely shale oil and shale gas. For this study, the g-CN nanomaterial was produced by melamine pyrolysis, and characterized by X-Ray Diffraction, Scanning Electron Microscopy and Fourier Transform Infrared spectroscopy techniques.
View Article and Find Full Text PDFInt J Biol Macromol
January 2025
Department of Petroleum and Gas Engineering Technology, Federal Polytechnic of Oil and Gas, Bonny-island, PMB 5027, Rivers State, Nigeria.
Chromium-based lignosulfonate (CrLS) deflocculants that are commonly used in water-based drilling muds (WBDMs) to deflocculate bentonites under high temperature (HT), high-pressure (HP), and high-salinity (HS) oil well drilling conditions have been found to contain heavy metals such as chromium, which is toxic and degrades rapidly. However, different ways of addressing this issue have been proffered, including the use of natural polymers such as starch, cellulose, or anionic inorganic agents such as sodium polyphosphates with little or no impact. Other lignosulfonate (LS)-based deflocculants, like sodium-based LS and bio-based LS, have shown a number of benefits, such as being better for the environment, more soluble and evenly distributed in WBDMs, more resistant to salt contamination, easily biodegradable, safe, and able to go through different chemical changes.
View Article and Find Full Text PDFHeliyon
December 2024
Department of Chemical Engineering, Shiraz Branch, Islamic Azad University, Shiraz, Iran.
Pipe-stuck, filtrate volume, and formation damage during the drilling operation are directly related to the poor performance of drilling fluids. Hence, considerable attention is required to improve the filtration and rheological properties of drilling fluids and achieve industrial and environmental qualification standards. This study experimentally investigates the impact of Pectin and Astragalus gum biopolymers on the filtration and rheological properties of the water-based drilling fluid (WBDF).
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!