The metastable β-Ti21S alloy is evaluated as a potential candidate for biomedical parts. Near fully dense (99.75 ± 0.02%) samples are additively manufactured (that is, 3D-printed) by laser powder-bed fusion (L-PBF). In the as-built condition, the material consists of metastable β-phase only, with columnar grains oriented along the building direction. The material exhibits an extremely low Young's modulus (52 ± 0.3 GPa), which was never reported for this type of alloy. The combination of good mechanical strength (σ = 709 ± 6 MPa, ultimate tensile strength (UTS) = 831 ± 3 MPa) and high total elongation during tensile test (21% ± 1.2%) in the as-built state, that is, without any heat treatment, is close to that of the wrought alloy and comparable to that of heat treated Ti grade 5. The good biocompatibility attested by cytotoxicity tests confirms its great suitability for biomedical applications.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7345763 | PMC |
http://dx.doi.org/10.3390/ma13122792 | DOI Listing |
J Funct Biomater
December 2024
Adult Spine Orthopaedics Department, W. Dega Orthopaedic and Rehabilitation Clinical Hospital, Poznan University of Medical Sciences, 28 Czerwca 1956 Street 135/147, 61-545 Poznan, Poland.
The prototype of a biomimetic multi-spiked connecting scaffold (MSC-Scaffold) represents an essential innovation in the fixation in subchondral trabecular bone of components for a new generation of entirely cementless hip resurfacing arthroplasty (RA) endoprostheses. In designing such a functional biomaterial scaffold, identifying the microstructural and mechanical properties of the host bone compromised by degenerative disease is crucial for proper post-operative functioning and long-term maintenance of the endoprosthesis components. This study aimed to explore, depending on the occurrence of obesity, changes in the microstructure and mechanical properties of the subchondral trabecular bone in femoral heads of osteoarthritis (OA) patients caused by the MSC-Scaffold embedding.
View Article and Find Full Text PDFJ Funct Biomater
December 2024
Department of Orthopedic Surgery, University of Kansas Medical Center, 3901 Rainbow Boulevard, Kansas City, KS 66160, USA.
This study aimed to investigate the impact of varying the formulation of a specific peptide hydrogel (PepGel) on the release kinetics of rhBMP-2 in vitro. Three PepGel formulations were assessed: (1) 50% / (peptides volume/total volume) PepGel, where synthetic peptides were mixed with crosslinking reagents and rhBMP-2 solution; (2) 67% / PepGel; (3) 80% / PepGel. Each sample was loaded with 12 µg of rhBMP-2 and incubated in PBS.
View Article and Find Full Text PDFBiomimetics (Basel)
December 2024
Department of Industrial Engineering, University of Padova, Via Marzolo 9, 35131 Padova, Italy.
In recent years, the demand for orthopedic implants has surged due to increased life expectancy, necessitating the need for materials that better mimic the biomechanical properties of human bone. Traditional metal implants, despite their mechanical superiority and biocompatibility, often face challenges such as mismatched elastic modulus and ion release, leading to complications and implant failures. Polyetheretherketone (PEEK), a semi-crystalline polymer with an aromatic backbone, presents a promising alternative due to its adjustable elastic modulus and compatibility with bone tissue.
View Article and Find Full Text PDFBiomimetics (Basel)
December 2024
Center for Advanced Eye Care, Vero Beach, FL 32960, USA.
We have compared the biomechanical properties of human and porcine corneas using vibrational optical coherence tomography (VOCT). The elastic modulus of the cornea has been previously reported in the literature to vary from about several kPa to more than several GPa based on the results of different techniques. In addition, the formation of corneal cones near the central cornea in keratoconus has been observed in the clinic.
View Article and Find Full Text PDFGels
December 2024
Ufa Institute of Chemistry, Ufa Federal Research Center, Russian Academy of Sciences, 450054 Ufa, Russia.
The application of nanocomposites based on polyacrylamide hydrogels as well as silica nanoparticles in various tasks related to the petroleum industry has been rapidly developing in the last 10-15 years. Analysis of the literature has shown that the introduction of nanoparticles into hydrogels significantly increases their structural and mechanical characteristics and improves their thermal stability. Nanocomposites based on hydrogels are used in different technological processes of oil production: for conformance control, water shutoff in production wells, and well killing with loss circulation control.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!