Ascorbic acid (AA) is a general antioxidant used in aqueous pharmaceutical formulations. However, in aqueous solutions, AA is unstable and easily oxidized when exposed to air, light and/or heat. Cyclodextrins are well known for their ability to form inclusion complexes with various compounds to improve their solubility and stability. Previous studies demonstrate that cyclodextrins preserve the antioxidant capacity of AA but data for γ-cyclodextrin (γCD) have not been reported. Poly(vinyl alcohol) (PVA) is a hydrophilic polymer widely used as a drug matrix in various pharmaceutical fields, but its application for drug stabilization is limited. This study aimed to investigate the protective ability of γCD on AA through the formation of ternary complexes with PVA. Binary (i.e., AA/γCD, AA/PVA and γCD/PVA) and ternary (i.e., AA/γCD/PVA) complexes were first confirmed. It was reported that those complexes were formed through interactions between the heterocyclic ring of AA, hydroxyl group of PVA and hydrophobic cavity of γCD. The hydrodynamic diameter of complexes was then studied. It was found that the diameter of γCD/PVA complexes increased with respect to the concentration of γCD. Higher γCD concentrations also resulted in increasing hydrodynamic diameters of the ternary complex. The presence of AA in ternary complexes interfered with the aggregation tendency of γCD/PVA binary complexes. Furthermore, the antioxidant capacity of AA in binary and ternary complexes was investigated. It was found that the presence of γCD preserved the antioxidant activity of AA, whereas PVA showed a contrasting effect. The influence of γCD and PVA concentration on antioxidant capacity was then studied through central composite design (CCD). Even though the concentration of γCD significantly affected the inhibition efficiency of the ternary complex, the insignificant influence of PVA could not be ignored. A promising protective ternary complex should consist of an optimized concentration of PVA and a high concentration of γCD.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7352738PMC
http://dx.doi.org/10.3390/ijms21124399DOI Listing

Publication Analysis

Top Keywords

ternary complexes
16
antioxidant capacity
12
concentration γcd
12
ternary complex
12
complexes
10
γcd
9
ternary
8
ascorbic acid
8
polyvinyl alcohol
8
pva
7

Similar Publications

Photochemistry of Microsolvated Nitrous Acid: Observation of the Water-Separated Complex of Nitric Oxide and Hydroxyl Radical.

J Phys Chem Lett

January 2025

Department of Chemistry, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University, Shanghai 200433, China.

The photochemistry of nitrous acid (HONO) plays a crucial role in atmospheric chemistry as it serves as a key source of hydroxyl radicals (OH) in the atmosphere; however, our comprehension of the underlying mechanism for the photochemistry of HONO especially in the presence of water is far from being complete as the transient intermediates in the photoreactions have not been observed. Herein, we report the photochemistry of microsolvated HONO by water in a cryogenic N matrix. Specifically, the 1:1 hydrogen-bonded water complex of HONO was facially prepared in the matrix through stepwise photolytic O oxidation of the water complex of imidogen (NH-HO) via the intermediacy of the elusive water complex of peroxyl isomer HNOO.

View Article and Find Full Text PDF

Unbiased picture of the ligand docking process for the hevein protein-oligosaccharide complex.

Sci Rep

January 2025

Department of Applied Chemistry, Faculty of Engineering, University of Miyazaki, 1-1 Nishi, Gakuen-Kibanadai, Miyazaki, 889-2192, Japan.

The ligand-docking behavior of hevein, the major latex protein from the rubber tree Hevea brasiliensis (Euphorbiaceae), has been investigated by the unguided molecular dynamics (MD) simulation method. An oligosaccharide molecule, initially placed in an arbitrary position, was allowed to move around hevein for a prolonged simulation time, on the order of microseconds, with the expectation of spontaneous ligand docking of the oligosaccharide molecule to the binding site of hevein. In the binary solution system consisting of a hevein molecule and a chito-trisaccharide (GlcNAc) molecule, three out of the six separate simulation runs successfully reproduced the complex structure of the observed binding from.

View Article and Find Full Text PDF

TiCT/Au NPs/PPy ternary heterostructure-based intra-capacitive self-powered sensor for DEHP detection.

J Hazard Mater

January 2025

Department of Analytical Chemistry, College of Chemistry, Jilin University, Changchun 130012, China. Electronic address:

Phthalate esters, particularly di(2-ethylhexyl) phthalate (DEHP), are widely used plasticizers found in various consumer products, posing significant environmental and health risks due to their endocrine-disrupting effects. In this study, a novel enzyme-free intra-capacitive biofuel cell self-powered sensor (ICBFC-SPS) was developed. The ICBFC-SPS integrated a ternary heterostructure-based capacitive anode and a cathode with a sensing interface into a single-chamber electrolytic cell.

View Article and Find Full Text PDF

The ternary complex effectively prevents droplet aggregation, Ostwald ripening, and phase separation through its gel network, thereby demonstrating its capability in bioactive compound delivery. In this work, the influence of varying chickpea protein isolate (CPI) levels on the microstructure, gel characteristics, stability and functional properties of grape seed proanthocyanidin (GSP) and konjac gum (KGM) stabilized ternary complexes was investigated. Visual appearance indicated the formation of a non-stratified ternary complex as the CPI enhanced to 3-4 %.

View Article and Find Full Text PDF

The trichomes of mustard leaves have significance due to their ability to combat unfavorable external conditions and enhance disease resistance. It was demonstrated that the MYB-bHLH-WD40 (MBW) ternary complex consists of MYB, basic Helix-Loop-Helix (bHLH), and WD40-repeat (WD40) family proteins and plays a key role in regulating trichome formation and density. The bHLH gene family, particularly the Myelocytomatosis (MYC) proteins that possess the structural bHLH domain (termed bHLH-MYC), are crucial to the formation and development of leaf trichomes in plants.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!