Nonequilibrium systems exhibit particle-type solutions. Oscillons are one of the best-known localized states of systems with time-dependent forcing or parametrically driven systems. We investigate the transition from nonradiative to radiative oscillons in the parametrically driven sine-Gordon model in two spatial dimensions. The bifurcation takes place when the strength of the forcing (frequency) increases (decreases) above a certain threshold. As a result of this transition, the oscillon emits radially symmetric evanescent waves. Numerically, we provide the phase diagram and show the supercritical nature of this transition. For small oscillations, based on the amplitude equation approach, the sine-Gordon equation with time-dependent forcing is transformed into the parametrically driven damped nonlinear Schrödinger model in two spatial dimensions. This amplitude equation exhibits a transition between nonradiative to radiative localized structures, consistently. Both models show quite good agreement.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1103/PhysRevE.101.052209 | DOI Listing |
Chem Sci
December 2024
ByteDance Research Bellevue Washington 98004 USA
A force field is a critical component in molecular dynamics simulations for computational drug discovery. It must achieve high accuracy within the constraints of molecular mechanics' (MM) limited functional forms, which offers high computational efficiency. With the rapid expansion of synthetically accessible chemical space, traditional look-up table approaches face significant challenges.
View Article and Find Full Text PDFJ Mech Behav Biomed Mater
January 2025
Department of Biomedical Engineering, Toronto Metropolitan University, Toronto, Canada; Sunnybrook Research Institute, Toronto, Canada.
The integration of self-expandable nitinol frames with cable-driven parallel mechanisms offers a promising advancement in minimally invasive cardiovascular interventions. This study presents the design, fabrication, and verification of a miniaturized self-expandable nitinol frame to enhance catheter tip steerability and navigation within complex vascular anatomies. The frame is reduced in size for delivery through 7-8 Fr sheaths while accommodating diverse vascular diameters, allowing up to a maximum expansion of 15 mm.
View Article and Find Full Text PDFMaterials (Basel)
January 2025
College of Architecture and Civil Engineering, Beijing University of Technology, Beijing 100124, China.
Sci Rep
January 2025
Department of Orthopaedic and Trauma Surgery, Musculoskeletal University Center Munich (MUM), Campus Grosshadern, Ludwig Maximilians University Munich, Munich, Germany.
In modern knee arthroplasty, surgeons increasingly aim for individualised implant selection based on data-driven decisions to improve patient satisfaction rates. The identification of an implant design that optimally fits to a patient's native kinematic patterns and functional requirements could provide a basis towards subject-specific phenotyping. The goal of this study was to achieve a first step towards identifying easily accessible and intuitive features that allow for discrimination between implant designs based on kinematic data.
View Article and Find Full Text PDFNeurooncol Adv
December 2024
Department of Neurosurgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA.
Background: Fully automatic skull-stripping and tumor segmentation are crucial for monitoring pediatric brain tumors (PBT). Current methods, however, often lack generalizability, particularly for rare tumors in the sellar/suprasellar regions and when applied to real-world clinical data in limited data scenarios. To address these challenges, we propose AI-driven techniques for skull-stripping and tumor segmentation.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!