Spatiotemporal antiresonance in coupled reaction-diffusion systems.

Phys Rev E

Indian Association for the Cultivation of Science, Jadavpur, Kolkata 700032, India.

Published: May 2020

We present a theoretical study of the spatiotemporal antiresonance in a system of two diffusively coupled chemical reactions, one of which is driven by an external periodic forcing. Although antiresonance is well known in various physical systems, the phenomenon in coupled chemical reactions has largely been overlooked. Based on the linearized dynamics around the steady state of the two-component coupled reaction-diffusion systems we have derived the general analytical expressions for the amplitude-frequency response functions of the driven and undriven components of the system. Our theoretical analysis is well corroborated by detailed numerical simulations on coupled Gray-Scott reaction-diffusion systems exhibiting antiresonance dip in the amplitude-frequency response curve as a result of destructive interference between the coupling and the periodic external forcing imparting differential stability of the two subsystems. This leads to the emergence of spatiotemporal patterns in an undriven subsystem, while the driven one settles down to a homogeneously stable steady state.

Download full-text PDF

Source
http://dx.doi.org/10.1103/PhysRevE.101.052203DOI Listing

Publication Analysis

Top Keywords

reaction-diffusion systems
12
spatiotemporal antiresonance
8
coupled reaction-diffusion
8
coupled chemical
8
chemical reactions
8
steady state
8
amplitude-frequency response
8
coupled
5
antiresonance coupled
4
systems
4

Similar Publications

Self-organization under out-of-equilibrium conditions is ubiquitous in natural systems for the generation of hierarchical solid-state patterns of complex structures with intricate properties. Efforts in applying this strategy to synthetic materials that mimic biological function have resulted in remarkable demonstrations of programmable self-healing and adaptive materials. However, the extension of these efforts to multifunctional stimuli-responsive solid-state materials across defined spatial distributions remains an unrealized technological opportunity.

View Article and Find Full Text PDF

Traveling waves of excitation arise from the spatial coupling of local nonlinear events by transport processes. In corrosion systems, these electro-dissolution waves relay local perturbations across large portions of the metal surface, significantly amplifying overall damage. For the example of the magnesium alloy AZ31B exposed to sodium chloride solution, we report experimental results suggesting the existence of a vulnerable zone in the wake of corrosion waves where local perturbations can induce a unidirectional wave pulse or segment.

View Article and Find Full Text PDF

This paper investigates the probabilistic-sampling-based asynchronous control problem for semi-Markov reaction-diffusion neural networks (SMRDNNs). Aiming at mitigating the drawback of the well-known fixed-sampling control law, a more general probabilistic-sampling-based control strategy is developed to characterize the randomly sampling period. The system mode is considered to be related to the sojourn-time and undetectable.

View Article and Find Full Text PDF

Dynamic patterns in herding predator-prey system: Analyzing the impact of inertial delays and harvesting.

Chaos

December 2024

Centre for Mathematical Biology and Ecology, Department of Mathematics, Jadavpur University, Kolkata 700032, India.

This study expands traditional reaction-diffusion models by incorporating hyperbolic dynamics to explore the effects of inertial delays on pattern formation. The kinetic system considers a harvested predator-prey model where predator and prey populations gather in herds. Diffusion and inertial effects are subsequently introduced.

View Article and Find Full Text PDF

Prion diseases, or transmissible spongiform encephalopathies (TSEs), are neurodegenerative disorders caused by the accumulation of misfolded conformers (PrP) of the cellular prion protein (PrP). During the pathogenesis, the PrP seeds disseminate in the central nervous system and convert PrP leading to the formation of insoluble assemblies. As for conventional infectious diseases, variations in the clinical manifestation define a specific prion strain which correspond to different PrP structures.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!