We study the Ising model on the square lattice (Z^{2}) and show, via numerical simulation, that allowing interactions between spins separated by distances 1 and m (two ranges), the critical temperature, T_{c}(m), converges monotonically to the critical temperature of the Ising model on Z^{4} as m→∞. Only interactions between spins located in directions parallel to each coordinate axis are considered. We also simulated the model with interactions between spins at distances of 1, m, and u (three ranges), with u a multiple of m; in this case our results indicate that T_{c}(m,u) converges to the critical temperature of the model on Z^{6}. For percolation, analogous results were proven for the critical probability p_{c} [B. N. B. de Lima, R. P. Sanchis, and R. W. C. Silva, Stochast. Process. Appl. 121, 2043 (2011)STOPB70304-414910.1016/j.spa.2011.05.009].

Download full-text PDF

Source
http://dx.doi.org/10.1103/PhysRevE.101.052138DOI Listing

Publication Analysis

Top Keywords

ising model
12
interactions spins
12
critical temperature
12
model square
8
square lattice
8
model
5
multirange ising
4
lattice study
4
study ising
4
lattice z^{2}
4

Similar Publications

Understanding the relation between cortical neuronal network structure and neuronal activity is a fundamental unresolved question in neuroscience, with implications to our understanding of the mechanism by which neuronal networks evolve over time, spontaneously or under stimulation. It requires a method for inferring the structure and composition of a network from neuronal activities. Tracking the evolution of networks and their changing functionality will provide invaluable insight into the occurrence of plasticity and the underlying learning process.

View Article and Find Full Text PDF

Effects of Temperature and Random Forces in Phase Transformation of Multi-Stable Systems.

Entropy (Basel)

December 2024

Department of Civil, Environmental, Land, Building Engineering and Chemistry (DICATECh), Polytechnic University of Bari, Via Orabona 4, 70125 Bari, Italy.

Multi-stable behavior at the microscopic length-scale is fundamental for phase transformation phenomena observed in many materials. These phenomena can be driven not only by external mechanical forces but are also crucially influenced by disorder and thermal fluctuations. Disorder, arising from structural defects or fluctuations in external stimuli, disrupts the homogeneity of the material and can significantly alter the system's response, often leading to the suppression of cooperativity in the phase transition.

View Article and Find Full Text PDF

Perturbational Decomposition Analysis for Quantum Ising Model with Weak Transverse Fields.

Entropy (Basel)

December 2024

Institute of Quantum Precision Measurement, State Key Laboratory of Radio Frequency Heterogeneous Integration, Shenzhen University, Shenzhen 518060, China.

This work presents a perturbational decomposition method for simulating quantum evolution under the one-dimensional Ising model with both longitudinal and transverse fields. By treating the transverse field terms as perturbations in the expansion, our approach is particularly effective in systems with moderate longitudinal fields and weak to moderate transverse fields relative to the coupling strength. Through systematic numerical exploration, we characterize parameter regimes and evolution time windows where the decomposition achieves measurable improvements over conventional Trotter decomposition methods.

View Article and Find Full Text PDF

Quantum Computing in Community Detection for Anti-Fraud Applications.

Entropy (Basel)

November 2024

Beijing QBoson Quantum Technology Co., Ltd., Beijing 100015, China.

Fraud detection within transaction data is crucial for maintaining financial security, especially in the era of big data. This paper introduces a novel fraud detection method that utilizes quantum computing to implement community detection in transaction networks. We model transaction data as an undirected graph, where nodes represent accounts and edges indicate transactions between them.

View Article and Find Full Text PDF
Article Synopsis
  • We refine the Affleck-Ludwig-Cardy formula for 1+1D conformal field theories, focusing on how high energy states relate to noninvertible global symmetries.
  • We calculate the main contributions to the entanglement entropy for a system with noninvertible symmetries, specifically looking at a single interval.
  • Using the critical double Ising model, we demonstrate that the ground state entanglement Hamiltonian exhibits a specific Hopf algebra symmetry when the system's boundary conditions reflect certain symmetries, and we provide the resulting symmetry-resolved entanglement entropies.
View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!