Recent experiments have reported a novel splay nematic phase, which has alternating domains of positive and negative splay. To model this phase, previous studies have considered a one-dimensional (1D) splay modulation of the director field, accompanied by a 1D modulation of polar order. When the flexoelectric coupling between splay and polar order becomes sufficiently strong, the uniform nematic state becomes unstable to the formation of a modulated phase. Here we reexamine this theory in terms of a recent approach to liquid crystal elasticity, which shows that pure splay deformation is double splay rather than planar single splay. Following that reasoning, we propose a structure with a two-dimensional (2D) splay modulation of the director field, accompanied by a 2D modulation of polar order, and show that the 2D structure generally has a lower free energy than the 1D structure.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1103/PhysRevE.101.052707 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!