Multifunctional, durable and highly conductive graphene/sponge nanocomposites.

Nanotechnology

College of Aerospace Engineering, Shenyang Aerospace University, Shenyang 110136, People's Republic of China. Shenyang Aircraft Design Institute, Shenyang 110136, People's Republic of China.

Published: November 2020

Porous functional materials play important roles in a wide variety of growing research and industrial fields. We herein report a simple, effective method to prepare porous functional graphene composites for multi-field applications. Graphene sheets were non-chemically modified by TritonX-100, not only to maintain high structural integrity but to improve the dispersion of graphene on the pore surface of a sponge. It was found that a graphene/sponge nanocomposite at 0.79 wt.% demonstrated ideal electrical conductivity. The composite materials have high strain sensitivity, stable fatigue performance for 20 000 cycles, short response time of 0.401 s and fast response to temperature and pressure. In addition, the composites are effective in monitoring materials deformation and acoustic attenuation with a maximum absorption rate 67.78% and it can be used as electrodes for a supercapacitor with capacitance of 18.1 F g. Moreover, no expensive materials or complex equipment are required for the composite manufacturing process. This new methodology for the fabrication of multifunctional, durable and highly conductive graphene/sponge nanocomposites hold promise for many other applications.

Download full-text PDF

Source
http://dx.doi.org/10.1088/1361-6528/ab9f73DOI Listing

Publication Analysis

Top Keywords

multifunctional durable
8
durable highly
8
highly conductive
8
conductive graphene/sponge
8
graphene/sponge nanocomposites
8
porous functional
8
nanocomposites porous
4
materials
4
functional materials
4
materials play
4

Similar Publications

Challenges emerge in the quest for highly efficient and biocompatible coatings to tackle microbial contamination. Here, we propose a bioinspired paradigm combining (-)-epigallocatechin gallate (EGCG) and l-arginine surfactants (LAM) as all-green building blocks for advanced coatings with superior performance. Molecular dynamics simulations reveal the natural assembly process of the EGCG/LAM supramolecular nanoparticles (ELA NPs).

View Article and Find Full Text PDF

A Thermally Robust Biopolymeric Separator Conveys K Transport and Interfacial Chemistry for Longevous Potassium Metal Batteries.

ACS Nano

January 2025

College of Energy, Soochow Institute for Energy and Materials Innovations, Jiangsu Provincial Key Laboratory for Advanced Carbon Materials and Wearable Energy Technologies, Soochow University, Suzhou 215006, P. R. China.

Potassium metal batteries (KMBs) hold promise for stationary energy storage with certain cost and resource merits. Nevertheless, their practicability is greatly handicapped by dendrite-related anodes, and the target design of specialized separators to boost anode safety is in its nascent stage. Here, we develop a thermally robust biopolymeric separator customized via a solvent-exchange and amino-siloxane decoration strategy to render durable and safe KMBs.

View Article and Find Full Text PDF

A photocatalytic superhydrophobic coating with p-n type BiOBr/α-FeO heterojunctions applied in NO degradation.

RSC Adv

January 2025

Institute of Resources and Environmental Engineering, Shanxi University, Shanxi Yellow River Laboratory Taiyuan China

Coal combustion generates soot-type air pollution, and NO, as a typical pollutant, is the main haze-causing pollutant. The degradation of NO by means of photocatalytic superhydrophobic multifunctional coatings is both durable and economical. The precipitation method was employed to create a p-n type BiOBr/α-FeO photocatalytic binary system.

View Article and Find Full Text PDF

Preparation and Application of Nature-inspired High-performance Mechanical Materials.

Acta Biomater

January 2025

The Key Laboratory of Bionic Engineering, Ministry of Education, Jilin University, Changchun 130025, China.

Natural materials are valued for their lightweight properties, high strength, impact resistance, and fracture toughness, often outperforming human-made materials. This paper reviews recent research on biomimetic composites, focusing on how composition, microstructure, and interfacial characteristics affect mechanical properties like strength, stiffness, and toughness. It explores biological structures such as mollusk shells, bones, and insect exoskeletons that inspire lightweight designs, including honeycomb structures for weight reduction and impact resistance.

View Article and Find Full Text PDF

High-performance and cost-effective hole-collecting materials (HCMs) are indispensable for commercially viable perovskite solar cells (PSCs). Here, we report an anchorable HCM composed of a triazatruxene core connected with three alkyl carboxylic acid groups (). In contrast to the phosphonic acid-containing tripodal analog (), molecules can form a hydrophilic monolayer on a transparent conducting oxide surface, which is beneficial for subsequent perovskite film deposition in the traditional layer-by-layer fabrication process.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!