Background: P. chinensis saponins (PRS) are pentacyclic triterpenoid bioactive constituents from Pulsatilla chinensis (Bunge) Regel. In our previous study, PRS caused chronic liver injury (CLI) with the significant changes of lipid metabolites including sphingomyelin (SM) in serum after long-term administration. The SM in the hepatocytes membrane plays an indispensable role in maintaining cell membrane stability and regulating the extracellular and intracellular signal transduction. However, it is still unknown the pathway related to SM and the mechanism of CLI on hepatocyte.

Purpose: The purpose of this study was to explore the hepatotoxicity mechanism of PRS in vivo and in vitro, to reveal the action of mechanism of SM and the pathway related to liver injury.

Methods: SD rats were orally administered with PRS for 240 days and liver injury was evaluated by histological examinations. Metabolomics analysis was used to explore the liver metabolic pathway affected by PRS, and the expressions of related proteins were evaluated by western blots. To discover and elucidate the underlying mechanisms of metabolites changes induced by PRS at the cellular level, cellular morphology, MTT assays, western blots and cell membrane potential measurements were carried out using LO2 cells. Furthermore, the roles of SM and cholesterol (Chol) in hepatocyte injury were investigated individually in overload Chol and SM groups. Sphingolipid metabolic pathway related with ceramide/sphingomyelin (Cer/SM) balance was explored using cellular lipidomics and RT-PCR.

Results: PRS gradually damaged the rat's liver in a time-dependent manner. The analysis of liver metabolism profiles showed that lipids metabolites were changed, including sphingolipid, bile acid, linoleic acid and fatty acid. We found that PRS induced apoptosis by interfering with bile acid-mediated sphingolipid metabolic pathway and Cer/SM balance in CLI. In in vitro experiments, PRS led to the increase of LDH leakage, depolarized cell membrane potential and caused cell membrane toxicity. Furthermore, PRS inducedG0/G1 phase cell cycle arrest in LO2 cells, simultaneously activated cellular extrinsic and intrinsic apoptosis pathways. PRS acted on SM and interfered with Cer/SM balance, which promote lipid metabolism dysregulation and apoptosis.

Conclusion: PRS acted on SM to interfere Cer/SM balance on LO2 cell. Both in vivo and in vitro, PRS induced Cer/SM imbalance which promoted lipid metabolism disorder and apoptosis. Apoptosis and lipids changes gradually damaged the rats liver, and ultimately developed into CLI.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.phymed.2020.153265DOI Listing

Publication Analysis

Top Keywords

cell membrane
16
cer/sm balance
16
prs
13
liver injury
12
lipid metabolism
12
metabolic pathway
12
pulsatilla chinensis
8
chinensis saponins
8
liver
8
metabolism dysregulation
8

Similar Publications

Steroids are organic compounds found in all forms of biological life. Besides their structural roles in cell membranes, steroids act as signalling molecules in various physiological processes and are used to treat inflammatory conditions. It has been hypothesised that in addition to their well-characterised genomic and non-genomic pathways, steroids exert their biological or pharmacological activities an indirect, nonreceptor-mediated membrane mechanism caused by steroid-induced changes to the physicochemical properties of cell membranes.

View Article and Find Full Text PDF

The rising prevalence of multidrug-resistant (MDR) Gram-positive bacteria threatens the effectiveness of current antibiotic therapies. However, the development of new antibiotics has stagnated in recent years, highlighted the critical need for the discovery of innovative antimicrobial agents. This study aims to evaluate the antibacterial activity of naphthoquinones derived from Arnebia euchroma (Royle) Johnst (ADNs) and elucidate their underlying mechanisms.

View Article and Find Full Text PDF

Vps4a Mediates a Unified Membrane Repair Machinery to Attenuate Ischemia/Reperfusion Injury.

Circ Res

January 2025

Center for Genetic Medicine, the Fourth Affiliated Hospital, Zhejiang University School of Medicine, Yiwu, China (X.H., J.Z., C.X., R.C., P.J., X.J., P.H.).

Background: Cardiac ischemia/reperfusion disrupts plasma membrane integrity and induces various types of programmed cell death. The ESCRT (endosomal sorting complex required for transport) proteins, particularly AAA-ATPase Vps4a (vacuolar protein sorting 4a), play an essential role in the surveillance of membrane integrity. However, the role of ESCRT proteins in the context of cardiac injury remains unclear.

View Article and Find Full Text PDF

Filamin A C-terminal fragment modulates Orai1 expression by inhibition of protein degradation.

Am J Physiol Cell Physiol

January 2025

Department of Physiology (Cellular Physiology Research Group),Institute of Molecular Pathology Biomarkers (IMPB), University of Extremadura, 10003-Caceres, Spain.

Filamin A (FLNA) is an actin-binding protein that has been reported to interact with STIM1 modulating the activation of Orai1 channels. Cleaving of FLNA by calpain leads to a C-terminal fragment that is involved in a variety of functional and pathological events, including pro-oncogenic activity in different types of cancer. Here we show that full-length FLNA is downregulated in samples from colon cancer patients as well as in the adenocarcinoma cell line HT-29.

View Article and Find Full Text PDF

The future of cell-free synthetic biology.

Biotechnol Notes

November 2024

Department of Chemical Engineering, Tsinghua University, Beijing 100084, China.

Cell-free synthetic biology aims at the targeted replication, design, and modification of life processes in open systems by breaking free of constraints such as cell membrane barriers and living cell growth. The beginnings of this systematized technology, which took place in the last century, were used to explore the secrets of life. Currently, with its easy integration with other technologies or disciplines, cell-free synthetic biology is developing into a powerful and effective means of understanding, exploiting, and extending the structure and function of natural living systems.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!