Tolerogenic vaccines for the treatment of cardiovascular diseases.

EBioMedicine

Division of BioTherapeutics, Leiden Academic Centre for Drug Research, Einsteinweg 55, PO Box 9502, 2300RA Leiden, the Netherlands.

Published: July 2020

Atherosclerosis is the main pathology behind most cardiovascular diseases. It is a chronic inflammatory disease characterized by the formation of lipid-rich plaques in arteries. Atherosclerotic plaques are initiated by the deposition of cholesterol-rich LDL particles in the arterial walls leading to the activation of innate and adaptive immune responses. Current treatments focus on the reduction of LDL blood levels using statins, however the critical components of inflammation and autoimmunity have been mostly ignored as therapeutic targets. The restoration of immune tolerance towards atherosclerosis-relevant antigens can arrest lesion development as shown in pre-clinical models. In this review, we evaluate the clinical development of similar strategies for the treatment of inflammatory and autoimmune diseases like rheumatoid arthritis, type 1 diabetes or multiple sclerosis and analyse the potential of tolerogenic vaccines for atherosclerosis and the challenges that need to be overcome to bring this therapy to patients.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7322234PMC
http://dx.doi.org/10.1016/j.ebiom.2020.102827DOI Listing

Publication Analysis

Top Keywords

tolerogenic vaccines
8
cardiovascular diseases
8
vaccines treatment
4
treatment cardiovascular
4
diseases atherosclerosis
4
atherosclerosis main
4
main pathology
4
pathology cardiovascular
4
diseases chronic
4
chronic inflammatory
4

Similar Publications

A comprehensive overview of tolerogenic vaccine adjuvants and their modes of action.

Front Immunol

January 2025

Amgen Research, Amgen Inc., South San Francisco, CA, United States.

Article Synopsis
  • Tolerogenic vaccines aim to create immune tolerance specifically for disease-related antigens, offering a safer alternative to broad immunosuppression, which can lead to infections and weakened anti-tumor responses.
  • They work by promoting certain immune cells that help regulate and suppress harmful immune responses, thus targeting conditions like autoimmunity and transplant rejection.
  • The design of these vaccines varies, often involving a relevant antigen paired with a tolerogenic adjuvant that enhances their effectiveness by creating a more favorable immune response through multiple mechanisms.
View Article and Find Full Text PDF

Spatiotemporal Nano-Regulator Unleashes Anti-Tumor Immunity by Overcoming Dendritic Cell Tolerance and T Cell Exhaustion in Tumor-Draining Lymph Nodes.

Adv Mater

December 2024

State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China.

Lymph nodes are crucial immune foci as the primary target for cancer immunotherapy. However, the anti-tumor functions of tumor-draining lymph nodes (TDLNs) are critically suppressed by tumors. Here, a novel spatiotemporal nano-regulator is presented, designed to modulate the dendritic cells (DCs) in TDLNs, establishing a supportive niche for immune surveillance.

View Article and Find Full Text PDF

Mesoporous polydopamine nanoparticle-based tolerogenic vaccine induces antigen-specific immune tolerance to prevent and treat autoimmune multiple sclerosis.

Biomaterials

May 2025

School of Chemical Engineering, Sungkyunkwan University (SKKU), Suwon, 16419, Republic of Korea; Department of Health Sciences and Technology, Samsung Advanced Institute for Health Sciences & Technology (SAIHST), Sungkyunkwan University (SKKU), Suwon, 16419, Republic of Korea; Department of MetaBioHealth, Sungkyunkwan University (SKKU), Suwon, 16419, Republic of Korea; Biomedical Institute for Convergence at SKKU (BICS), Sungkyunkwan University (SKKU), Suwon, 16419, Republic of Korea; Institute of Quantum Biophysics (IQB), Sungkyunkwan University, Suwon, 16419, Republic of Korea. Electronic address:

Multiple sclerosis (MS) is a chronic neurological disorder derived from autoreactive immune system attacking the protective myelin sheath that surrounds nerves in the central nervous system (CNS). Here, a tolerogenic nanovaccine for generating an antigen-specific immune tolerance for treating MS is proposed. It consisted of a mesoporous polydopamine (mPDA) nanoparticle, characterized by high reactive oxygen species (ROS)-scavenging property, loaded with MS-derived autoantigen.

View Article and Find Full Text PDF

Cholecystokinin and gastrin as immune modulating hormones: Implications and applications.

Cytokine Growth Factor Rev

December 2024

KU Leuven Department of Microbiology, Immunology and Transplantation, Rega Institute, Division of Virology, Antiviral Drug and Vaccine Research, Laboratory of Molecular Vaccinology and Vaccine Discovery, Leuven, Belgium. Electronic address:

Cholecystokinin (CCK) and gastrin are gastrointestinal hormones traditionally recognised for their roles in digestion. However, it has been recognised that these hormones may also modulate immune function. Here, we examine the immune-modulating effects of CCK and gastrin, and explore the functional significance of this dual role.

View Article and Find Full Text PDF

Vaccination with self- and foreign peptides induces weak and strong expansion of antigen-specific CD4 T cells, respectively, but the mechanism is not known. In the present study, we used computational analysis of the entire mouse major histocompatibility complex class II peptidome to test how much of the naive CD4 T cell repertoire specific for self-antigens was shaped by negative selection in the thymus and found that negative selection only partially explained the difference between responses to self and foreign. In naive uninfected and unimmunized mice, we identified higher expression of programmed cell death protein 1 (PD-1) and CD73 mRNA and protein on self-specific CD4 T cells compared with foreign-specific CD4 T cells.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!