The gut microbiota composition and dietary factors in our food along with the use of prebiotics and probiotics play an important role in the maintenance of human health. A well-balanced gut microbial population is necessary for the host and the microbiota to coexist in a mutually beneficial relationship maintaining homeostasis. Considering the potential of modern technological tools, it is possible nowadays to engineer prebiotic bacteria having a positive influence on the microbiome on one hand while on the other one may have the ease to get rid of the pathogenic proinflammatory microbes or elements causing dysbiosis. Past studies have seen that in cancer there is a loss of inter-microbial relationship cum interactions within microbiota members, the metabolic products produced by them and the host immune system in a microbial ecosystem, leading to dysbiosis. Current review highlights the importance of probiotics in the management of cancer by bringing together majority of the studies together at a single platform and moreover, stresses upon the need to maintain eubiosis in order to evade and inhibit the progression of cancer. Continuous expansion in knowledge about probiotics, their effect on various cancers and the underlying mechanism of action has raised the global scientific interest towards their possible use against different cancers. Furthermore, the article emphasizes upon the need to explore newer therapeutic targets comprising of the microbiome which could further pave the way to the concept of personalized medicines for various kinds of malignancies so as to derive maximum benefits of a treatment modality and to preserve the microbial homeostasis.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.semcancer.2020.06.009DOI Listing

Publication Analysis

Top Keywords

probiotics
4
probiotics microbiome
4
microbiome ecological
4
ecological balance
4
balance providing
4
providing therapeutic
4
therapeutic window
4
cancer
4
window cancer
4
cancer gut
4

Similar Publications

There are limited studies on the improvement of leaky gut with minor inflammation associated with various diseases. To explore the therapeutic potential of Lactiplantibacillus plantarum 22 A-3, a member of the Lactobacillus species, in addressing a leaky gut. Lactiplantibacillus plantarum 22 A-3 was administered to a leaky gut mice model with low dextran sulfate sodium concentrations.

View Article and Find Full Text PDF

Microbiota and immune dynamics in rheumatoid arthritis: Mechanisms and therapeutic potential.

Best Pract Res Clin Rheumatol

January 2025

Department of Rheumatology and Immunology, Peking University People's Hospital, No. 11, Xizhimen South Street, Xicheng District, Beijing, 100044, China; Beijing Key Laboratory for Rheumatism Mechanism and Immune Diagnosis (BZ0135), No. 11, Xizhimen South Street, Xicheng District, Beijing, 100044, China; Division of Rheumatology, Department of Medicine, University of Colorado, No. 11, Xizhimen South Street, Xicheng District, Aurora, CO, 80045, USA. Electronic address:

Rheumatoid arthritis (RA) is a complex autoimmune disease with growing evidence implicating the microbiota as a critical contributor to its pathogenesis. This review explores the multifaceted roles of microbial dysbiosis in RA, emphasizing its impact on immune cell modulation, autoantibody production, gut barrier integrity, and joint inflammation. Animal models reveal how genetic predisposition and environmental factors interact with specific microbial taxa to influence disease susceptibility.

View Article and Find Full Text PDF

Lactobacillus acidophilus YL01 and its exopolysaccharides ameliorate obesity and insulin resistance in obese mice via modulating intestinal specific bacterial groups and AMPK/ACC signaling pathway.

Int J Biol Macromol

January 2025

College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, China; Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education and Tianjin, Tianjin 300457, China. Electronic address:

Probiotics intervention by Lactobacillus acidophilus has potential effect on alleviating obesity and insulin resistance. However, the limited knowledge of functional substances and potential regulatory mechanisms hinder their widespread application. Herein, L.

View Article and Find Full Text PDF

Recombinant probiotic Escherichia coli delivers the polymeric protein of swine influenza virus for protection.

Vet Microbiol

January 2025

College of Veterinary Medicine, Jilin Provincial Engineering Research Center of Animal Probiotics, Jilin Provincial Key Laboratory of Animal Microecology and Healthy Breeding, Engineering Research Center of Microecological Vaccines (Drugs) for Major Animal Diseases, Ministry of Education, Jilin Agricultural University, Changchun 130118, China. Electronic address:

Swine influenza virus invades the host through the respiratory mucosa, which severely restricts the development of the pig breeding industry. To construct monomeric and trimeric vaccines, we developed recombinant Escherichia coli Nissle 1917 (EcN) strains that express the receptor binding site (RBS) of the hemagglutinin (HA) antigen from H1N1 swine influenza virus. After the mucosal immunization of mice, we found that probiotics activated CD40 and CD86 in DCs and increased the levels of IL-4 and IFN-γ secretion by T cells.

View Article and Find Full Text PDF

Subphenotypes of Long COVID and the clinical applications of probiotics.

Biomed Pharmacother

January 2025

School of Medical and Life Sciences, Sunway University, Petaling Jaya, Selangor 47500, Malaysia. Electronic address:

As the number of infections and deaths attributable to severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection continues to rise, it is now becoming apparent that the health impacts of the Coronavirus disease (COVID-19) may not be limited to infection and the subsequent resolution of symptoms. Reports have shown that patients with SARS-CoV-2 infection may experience multiple symptoms across different organ systems that are associated with adverse health outcomes and develop new cardiac, renal, respiratory, musculoskeletal, and nervous conditions, a condition known as Long COVID or the post-acute sequelae of COVID-19 (PASC). This review provides insights into distinct subphenotypes of Long COVID and identifies microbiota dysbiosis as a common theme and crucial target for future therapies.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!