Background: Amyloid plaque in the brain is associated with a wide range of neurodegenerative diseases such as Alzheimer's and Parkinson's and defined as aggregates of amyloid fibrils rich in β-sheet structures.
New Method: We report a label-free method based on small-angle X-ray scattering (SAXS) to estimate amyloid load in an intact mouse head with skull. The method is based on recording and analyzing the X rays elastically scattered from the β-sheets of amyloid plaques in a mouse head at angles smaller than 10° and energies between 30 and 45 keV. The method is demonstrated by acquiring the spectral SAXS data of an amyloid model and an excised head from a wild-type mouse for 600 s.
Results: We captured the distinct scattering peaks of the amyloid plaques at momentum transfer (q) of 6 and 13 nm associated with β-sheet structure. We first show linear correlation between the mass fraction of the amyloid target and the area under the peak (AUP) of the scattering curve. We report results for estimating amyloid load in a fixed mouse head by recovering the characteristic scattering signal from the amyloid target situated at various locations. The coefficient of variation in the amyloid load estimate is found to be less than 10%.
Comparison With Existing Methods: There are no previously described label-free X-ray methods for the estimation of amyloid load in an intact head.
Conclusions: We demonstrated the feasibility of a label-free method based on SAXS to potentially estimate brain amyloid in small animals.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.jneumeth.2020.108822 | DOI Listing |
Parkinsonism Relat Disord
January 2025
Department of Nuclear Medicine, Seoul Metropolitan Government-Seoul National University Boramae Medical Center, Seoul National University College of Medicine, Seoul, Republic of Korea. Electronic address:
Introduction: In isolated REM sleep behavior disorder (iRBD), the evidence of cognitive impairment and co-existing amyloid pathology suggests that mild behavioral impairment (MBI) may be associated with disease progression. In this study, we investigated MBI and its association with cognitive function, brain amyloid load and glucose metabolism in iRBD patients to evaluate the utility of MBI as a predictive marker of disease progression.
Methods: Patients with iRBD underwent a neuropsychological evaluation, F-florbetaben (FBB) PET, and F-fluorodeoxyglucose (FDG) PET.
Mol Neurodegener
January 2025
Department of Neurobiology and Behavior, Charlie Dunlop School of Biological Sciences, University of California, Irvine, CA, 92697-4545, USA.
Background: Apolipoprotein E ε4 (APOE4) is the strongest genetic risk factor for late-onset Alzheimer's disease (LOAD). A recent case report identified a rare variant in APOE, APOE3-R136S (Christchurch), proposed to confer resistance to autosomal dominant Alzheimer's Disease (AD). However, it remains unclear whether and how this variant exerts its protective effects.
View Article and Find Full Text PDFBiosci Trends
January 2025
Department of Neurosurgery, Haikou Affiliated Hospital of Central South University Xiangya School of Medicine, Haikou, China.
Alzheimer's disease (AD), the leading cause of dementia, significantly impacts global public health, with cases expected to exceed 150 million by 2050. Late-onset Alzheimer's disease (LOAD), predominantly influenced by the APOE-ε4 allele, exhibits complex pathogenesis involving amyloid-β (Aβ) plaques, neurofibrillary tangles (NFTs), neuroinflammation, and blood-brain barrier (BBB) disruption. Proteomics has emerged as a pivotal technology in uncovering molecular mechanisms and identifying biomarkers for early diagnosis and intervention in AD.
View Article and Find Full Text PDFActa Neuropathol
January 2025
Department of Neurology, NYU Grossman School of Medicine, New York, NY, USA.
Down syndrome (DS) is strongly associated with Alzheimer's disease (AD) due to APP overexpression, exhibiting Amyloid-β (Aβ) and Tau pathology similar to early-onset (EOAD) and late-onset AD (LOAD). We evaluated the Aβ plaque proteome of DS, EOAD, and LOAD using unbiased localized proteomics on post-mortem paraffin-embedded tissues from four cohorts (n = 20/group): DS (59.8 ± 4.
View Article and Find Full Text PDFSci Rep
January 2025
INSERM, Bergonié Institute, BPH, U1219, CIC-P 1401, University of Bordeaux, Bordeaux, France.
In vitro and animal studies have suggested that inoculation with herpes simplex virus 1 (HSV-1) can lead to amyloid deposits, hyperphosphorylation of tau, and/or neuronal loss. Here, we studied the association between HSV-1 and Alzheimer's disease biomarkers in humans. Our sample included 182 participants at risk of cognitive decline from the Multidomain Alzheimer Preventive Trial who had HSV-1 plasma serology and an amyloid PET scan.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!