A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Automatic diagnosis for cysts and tumors of both jaws on panoramic radiographs using a deep convolution neural network. | LitMetric

Automatic diagnosis for cysts and tumors of both jaws on panoramic radiographs using a deep convolution neural network.

Dentomaxillofac Radiol

Department of Biomedical Radiation Sciences, Graduate School of Convergence Science and Technology, Seoul National University, Seoul, South Korea.

Published: December 2020

Objectives: The purpose of this study was to automatically diagnose odontogenic cysts and tumors of both jaws on panoramic radiographs using deep learning. We proposed a novel framework of deep convolution neural network (CNN) with data augmentation for detection and classification of the multiple diseases.

Methods: We developed a deep CNN modified from YOLOv3 for detecting and classifying odontogenic cysts and tumors of both jaws. Our data set of 1282 panoramic radiographs comprised 350 dentigerous cysts (DCs), 302 periapical cysts (PCs), 300 odontogenic keratocysts (OKCs), 230 ameloblastomas (ABs), and 100 normal jaws with no disease. In addition, the number of radiographs was augmented 12-fold by flip, rotation, and intensity changes. We evaluated the classification performance of the developed CNN by calculating sensitivity, specificity, accuracy, and area under the curve (AUC) for diseases of both jaws.

Results: The overall classification performance for the diseases improved from 78.2% sensitivity, 93.9% specificity,91.3% accuracy, and 0.86 AUC using the CNN with unaugmented data set to 88.9% sensitivity, 97.2% specificity, 95.6% accuracy, and 0.94 AUC using the CNN with augmented data set. CNN using augmented data set had the following sensitivities, specificities, accuracies, and AUCs: 91.4%, 99.2%, 97.8%, and 0.96 for DCs, 82.8%, 99.2%, 96.2%, and 0.92 for PCs, 98.4%,92.3%,94.0%, and 0.97 for OKCs, 71.7%, 100%, 94.3%, and 0.86 for ABs, and 100.0%, 95.1%, 96.0%, and 0.97 for normal jaws, respectively.

Conclusion: The CNN method we developed for automatically diagnosing odontogenic cysts and tumors of both jaws on panoramic radiographs using data augmentation showed high sensitivity, specificity, accuracy, and AUC despite the limited number of panoramic images involved.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7719862PMC
http://dx.doi.org/10.1259/dmfr.20200185DOI Listing

Publication Analysis

Top Keywords

cysts tumors
16
tumors jaws
16
panoramic radiographs
16
data set
16
jaws panoramic
12
odontogenic cysts
12
radiographs deep
8
deep convolution
8
convolution neural
8
neural network
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!