The structural information and spatial distribution of molecules in biological tissues are closely related to the potential molecular mechanisms of disease origin, transfer, and classification. Ambient ionization mass spectrometry imaging is an effective tool that provides molecular images while describing in situ information of biomolecules in complex samples, in which ionization occurs at atmospheric pressure with the samples being analyzed in the native state. Ambient ionization mass spectrometry imaging can directly analyze tissue samples at a fairly high resolution to obtain molecules in situ information on the tissue surface to identify pathological features associated with a disease, resulting in the wide applications in pharmacy, food science, botanical research, and especially clinical research. Herein, novel ambient ionization techniques, such as techniques based on spray and solid-liquid extraction, techniques based on plasma desorption, techniques based on laser desorption ablation, and techniques based on acoustic desorption were introduced, and the data processing of ambient ionization mass spectrometry imaging was briefly reviewed. Besides, we also highlight recent applications of this imaging technology in clinical researches and discuss the challenges in this imaging technology and the perspectives on the future of the clinical research.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/jssc.202000273 | DOI Listing |
J Am Chem Soc
January 2025
Department of Chemistry, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul 02841, South Korea.
Epoxides are versatile chemical intermediates that are used in the manufacture of diversified industrial products. For decades, thermochemical conversion has long been employed as the primary synthetic route. However, it has several drawbacks, such as harsh and explosive operating conditions, as well as a significant greenhouse gas emissions problem.
View Article and Find Full Text PDFSci Rep
January 2025
Department of Polymers and Biopolymers, Faculty of Chemistry, Rzeszów University of Technology, 6 Powstańców Warszawy Ave., Rzeszów, 35-959, Poland.
This study presents an investigation of the chemical composition of Aloe vera leaf tissue with a focus on the spatial distribution of compounds. The composition was studied using two mass spectrometry imaging techniques: silver-109 nanoparticles assisted laser desorption/ionization mass spectrometry imaging (AgNPs-LDI-MSI) and laser ablation-remote atmospheric pressure photoionization/chemical ionization mass spectrometry imaging (LARAPPI/CI-MSI) and the identification was aided by ultra-high-performance liquid chromatography and ultra-high-resolution mass spectrometry (UHPLC-UHRMS) analysis. The results showed an abundance of phenolic compounds with antioxidant, antimicrobial, and anti-inflammatory properties, making it a beneficial food additive and food packaging material.
View Article and Find Full Text PDFMass Spectrom Rev
January 2025
School of Pharmaceutical Sciences, University of Geneva, Geneva, Switzerland.
Ionization and fragmentation are at the core of mass spectrometry. But they are not necessarily separated in space, as in-source fragmentation can also occur. Here, we survey the literature published since our 2005 review on the internal energy and fragmentation in electrospray ionization sources.
View Article and Find Full Text PDFRapid Commun Mass Spectrom
January 2025
Project Center of Advanced Mass Spectrometry Technologies, Skolkovo Institute of Science and Technology, Moscow, Russian Federation.
Rationale: Teaching mass spectrometry essentials is usually connected with one of the basic courses for undergrads. Thus, specific previous knowledge is required from students. However, the necessity of teaching mass spectrometry essentials to students of different academic specializations and multidisciplinary groups can arise in every academic group.
View Article and Find Full Text PDFFood Addit Contam Part A Chem Anal Control Expo Risk Assess
January 2025
USDA, Agricultural Research Service, National Center for Agricultural Utilization Research, Mycotoxin Prevention and Applied Microbiology Research Unit, Peoria, Illinois, USA.
Cocoa is a high value product and therefore a potential target for economic adulteration with less expensive ingredients. Carob flour is less expensive than cocoa powder and is frequently cited as a potential cocoa substitute. While carob has legitimate uses as a cocoa replacement, these characteristics also make it a potential adulterant of cocoa powder.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!