Stapled α-helical RIR (Rev1-interacting region) peptides of DNA POL κ bind more effectively to the RIR-interface of the C-terminal recruitment domain of the translesion synthesis DNA polymerase Rev1 than unstapled peptide. The tightest-binding stapled peptide translocates into cells and enhances the cytotoxicity of DNA damaging agents while reducing mutagenesis. Drugs with these characteristics could potentially serve as adjuvants to improve chemotherapy and reduce acquired resistance by inhibiting Rev1-dependent mutagenic translesion synthesis.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8057520PMC
http://dx.doi.org/10.1002/em.22395DOI Listing

Publication Analysis

Top Keywords

translesion synthesis
12
mutagenic translesion
8
stapled pol
4
pol peptide
4
peptide targets
4
targets rev1
4
rev1 inhibit
4
inhibit mutagenic
4
synthesis stapled
4
stapled α-helical
4

Similar Publications

The DNA adducts formed by the alkenylbenzene natural products, safrole (SF) and methyleugenol (MEG) are primarily attributed to their reported carcinogenic properties. Herein, we report a concise strategy to access -Ac-SF/MEG-dA phosphoramidites, which were selectively incorporated into DNA oligonucleotides by solid-phase DNA synthesis. The replication studies using human polymerases hpolκ and hpolη showed that both polymerases replicate these adducts error-free, which indicates that these polymerases do not contribute to the adduct-induced mutagenicity.

View Article and Find Full Text PDF

This study explored the genomic alterations in , a key yeast in industrial biotechnology, under both spontaneous and mutagen-induced conditions. Our findings reveal that spontaneous mutations occur at a rate of approximately 4 × 10 events per base pair per cell division, primarily manifesting as single-nucleotide variations (SNVs) and small insertions and deletions (InDels). Notably, C-to-T/G-to-A transitions and C-to-A/G-to-T transversions dominate the spontaneous SNVs, while 1 bp deletions, likely resulting from template slippage, are the most frequent InDels.

View Article and Find Full Text PDF

Acetaldehyde is the primary metabolite of alcohol and is present in many environmental sources including tobacco smoke. Acetaldehyde is genotoxic, whereby it can form DNA adducts and lead to mutagenesis. Individuals with defects in acetaldehyde clearance pathways have increased susceptibility to alcohol-associated cancers.

View Article and Find Full Text PDF

In a comprehensive study to decipher the multi-layered response to the chemotherapeutic agent temozolomide (TMZ), we analyzed 427 genomes and determined mutational patterns in a collection of ∼40 isogenic DNA repair-deficient human TK6 lymphoblast cell lines. We first demonstrate that the spontaneous mutational background is very similar to the aging-associated mutational signature SBS40 and mainly caused by polymerase zeta-mediated translesion synthesis (TLS). MSH2-/- mismatch repair (MMR) knockout in conjunction with additional repair deficiencies uncovers cryptic mutational patterns.

View Article and Find Full Text PDF

Xeroderma pigmentosum (XP) disorder is recognized as a genetic condition inherited by autosomal recessive fashion. XP results from a defective DNA repair mechanism that significantly increases skin cancer risk. Fifteen Vietnamese patients were investigated with typical clinical manifestations of XP.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!