A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Minimizing the echo time in diffusion imaging using spiral readouts and a head gradient system. | LitMetric

Purpose: Diffusion weighted imaging (DWI) is commonly limited by low signal-to-noise ratio (SNR) as well as motion artifacts. To address this limitation, a method that allows to maximize the achievable signal yield and increase the resolution in motion robust single-shot DWI is presented.

Methods: DWI was performed on a 3T scanner equipped with a recently developed gradient insert (gradient strength: 200 mT/m, slew rate: 600 T/m/s). To further shorten the echo time, Stejskal-Tanner diffusion encoding with a single-shot spiral readout was implemented. To allow non-Cartesian image reconstruction using such strong and fast gradients, the characterization of eddy current and concomitant field effects was performed based on field-camera measurements.

Results: An echo time of only 19 ms was achieved for a b-factor of 1000 s/mm . An in-plane resolution of 0.68 mm was encoded by a single-shot spiral readout of 40.5 ms using 3-fold undersampling. The resulting images did not suffer from off-resonance artifacts and blurring that are common to single-shot images acquired with regular gradient systems.

Conclusion: Spiral diffusion imaging using a head gradient system, together with an accurate characterization of the encoding process allows for a substantial reduction of the echo time, and improves the achievable resolution in motion-insensitive single-shot DWI.

Download full-text PDF

Source
http://dx.doi.org/10.1002/mrm.28346DOI Listing

Publication Analysis

Top Keywords

echo time
16
diffusion imaging
8
head gradient
8
gradient system
8
single-shot dwi
8
single-shot spiral
8
spiral readout
8
gradient
5
single-shot
5
minimizing echo
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!