Asymmetric copper-catalyzed fluorination of cyclic β-keto esters in a continuous-flow microreactor.

Org Biomol Chem

State Key Laboratory Breeding Base of Green Chemistry-Synthesis Technology, Key Laboratory of Green Pesticides and Cleaner Production Technology of Zhejiang Province, Department of Green Chemistry and Technology, Zhejiang University of Technology, Hangzhou 310014, P. R. China.

Published: July 2020

A highly enantioselective homogeneous fluorination of cyclic β-keto esters catalyzed by diphenylamine linked bis(oxazoline)-Cu(OTf)2 complexes has been established in a continuous flow microreactor. The microreactor allowed an efficient transformation with reaction times ranging from 0.5 to 20 min, and the desired products were afforded in high yields (up to 99%) with excellent enantioselectivities (up to 99% ee) at a low catalyst loading of 1 mol%.

Download full-text PDF

Source
http://dx.doi.org/10.1039/d0ob00588fDOI Listing

Publication Analysis

Top Keywords

fluorination cyclic
8
cyclic β-keto
8
β-keto esters
8
asymmetric copper-catalyzed
4
copper-catalyzed fluorination
4
esters continuous-flow
4
continuous-flow microreactor
4
microreactor highly
4
highly enantioselective
4
enantioselective homogeneous
4

Similar Publications

LaF@SiO yolk-shell heterostructure nanofiber-modified separator enhances the long-cycling performance of lithium-sulfur batteries.

J Colloid Interface Sci

December 2024

College of Materials Science and Engineering, Changchun University of Science and Technology, Changchun 130022, China; Key Laboratory of Applied Chemistry and Nanotechnology at Universities of Jilin Province, Changchun University of Science and Technology, Changchun 130022, China. Electronic address:

High-energy-density lithium-sulfur (Li-S) cells are identified as one of the most prospective next-generation energy storage appliances owing to their numerous advantages. Nonetheless, their widespread applications are restricted by the unwanted shuttling effect and tardy conversion reaction kinetics of lithium polysulfides (LiPSs). To address these puzzles, we present an innovative strategy for the one-pot synthesis of LaF@SiO yolk-shell heterostructure nanofibers (YSHNFs) through a straightforward uniaxial electrospinning process coupled with fluorination, avoiding the complexities of traditional methods.

View Article and Find Full Text PDF

The synthesis of tripeptides incorporating new fluorinated heterocyclic hydrazino acids, based on the tetrahydropyridazine scaffold is described. Starting from simple fluorinated hydrazones, these non-proteinogenic cyclic β-amino acids were easily prepared by a zinc-catalyzed aza-Barbier reaction followed by an intramolecular Michael addition. Preliminary conformational studies on tripeptides including this scaffold in the central position show an extended conformation in solution (NMR) and in the solid state (X-ray).

View Article and Find Full Text PDF

Enzyme-free detection of creatinine as a kidney dysfunction biomarker using TiO flow-through membranes.

Nanoscale Adv

December 2024

Nanomaterials Research Group (NRG), Physics Division, PINSTECH Islamabad 44000 Pakistan

TiO nanotube flow-through membranes (TNTsM) were fabricated anodization of Ti foil and explored as a biosensing platform for creatinine detection. The electrodes were prepared in different configurations including TNT membrane with top surface up (TNTsMTU/TNPs/FTO), TNT membrane with bottom surface up (TNTsMBU/TNPs/FTO), TNT membrane with top surface up containing nanograss (TNTsMNG/TNPs/FTO), and TNTs/NPs/FTO and TiO nanoparticles (TNPs) film on fluorine doped tin oxide (TNPs/FTO). Electrochemical studies depict the higher electrochemical activity (sensitivity ∼19.

View Article and Find Full Text PDF

Ion exchange (IX) can effectively remove per- and poly-fluoroalkyl substances (PFAS) from drinking water sources at ng/L to µg/L levels. However, adsorbed PFAS on spent resins should be further destructed for detoxification. Traditional resin incineration or landfilling may cause secondary pollution to the surrounding environment and cannot achieve resin reuse.

View Article and Find Full Text PDF

Copper-Catalyzed Asymmetric Tertiary Radical Cyanation for the Synthesis of Chiral Tetrasubstituted Monofluoroacyl Nitriles.

Org Lett

December 2024

School of Chemical and Environmental Engineering and Shanghai Engineering Research Center of Green Fluoropharmaceutical Technology, Shanghai Institute of Technology, Shanghai 201418, P. R. China.

The construction of chiral tetrasubstituted α-fluoro-α-cyano carbonyl compounds remains a key challenge in synthetic organic chemistry because of their popularity in multiple disciplines. In this paper, we report the copper-catalyzed asymmetric fluorinated tertiary radical cyanation reaction of cyclic α-iodo-α-fluoroindanones with TMSCN to achieve chiral nitriles with carbon-fluorine quaternary stereogenic centers. Thus, an array of optically active tetrasubstituted monofluoroacyl nitriles were synthesized with high reaction efficiency and excellent enantioselectivities (up to 91% yield, 99% ee).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!