Objective: The high prevalence of vitamin D deficiency and obesity drives the need for successful strategies that elevate vitamin D levels, prevent adipogenesis, and stimulate lipolysis. This study provides a theoretical model to evaluate how physical activity (PA) and sunlight exposure influence serum vitamin D levels and regional adiposity. This study hypothesized a posteriori that sunlight is associated with undifferentiated visceral adiposity by increasing the ratio of brown to white adipose tissue.

Methods: Using 10-year longitudinal data, accelerometry, a sun-exposure questionnaire, and regional adiposity quantified by dual-energy x-ray absorptiometry imaging, a structural-equation mediation model of growth curves was constructed with a data-driven methodology.

Results: Sunlight and PA conjointly increased serum vitamin D. Changes in vitamin D levels partially mediated how sunlight and PA impacted adiposity in visceral and subcutaneous regions within a subjective PA model. In an objective PA model, vitamin D was a mediator for subcutaneous regions only. Interestingly, sunlight was associated with less adiposity in subcutaneous regions but greater adiposity in visceral regions.

Conclusions: Sunlight and PA may increase vitamin D levels. For the first time, this study characterizes a positive association between sunlight and visceral adiposity. Further investigation and experimentation are necessary to clarify the physiological role of sunlight exposure on adipose tissue.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7501143PMC
http://dx.doi.org/10.1002/oby.22852DOI Listing

Publication Analysis

Top Keywords

vitamin levels
16
subcutaneous regions
12
sunlight
9
physical activity
8
activity sunlight
8
vitamin
8
sunlight exposure
8
serum vitamin
8
regional adiposity
8
sunlight associated
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!