AI Article Synopsis

  • Moiré superlattices in van der Waals heterostructures exhibit unique electronic properties such as superconductivity and magnetism, which are not found in the individual layers.
  • Researchers have developed a room-temperature method using piezoresponse force microscopy to visualize these superlattices with high spatial resolution.
  • The study reveals that all moiré superlattices respond to electric fields due to flexoelectricity, creating a network of polarized domain walls amid a non-polar material.

Article Abstract

Moiré superlattices in van der Waals heterostructures have given rise to a number of emergent electronic phenomena due to the interplay between atomic structure and electron correlations. Indeed, electrons in these structures have been recently found to exhibit a number of emergent properties that the individual layers themselves do not exhibit. This includes superconductivity, magnetism, topological edge states, exciton trapping and correlated insulator phases. However, the lack of a straightforward technique to characterize the local structure of moiré superlattices has thus far impeded progress in the field. In this work we describe a simple, room-temperature, ambient method to visualize real-space moiré superlattices with sub-5-nm spatial resolution in a variety of twisted van der Waals heterostructures including, but not limited to, conducting graphene, insulating boron nitride and semiconducting transition metal dichalcogenides. Our method uses piezoresponse force microscopy, an atomic force microscope modality that locally measures electromechanical surface deformation. We find that all moiré superlattices, regardless of whether the constituent layers have inversion symmetry, exhibit a mechanical response to out-of-plane electric fields. This response is closely tied to flexoelectricity wherein electric polarization and electromechanical response is induced through strain gradients present within moiré superlattices. Therefore, moiré superlattices of two-dimensional materials manifest themselves as an interlinked network of polarized domain walls in a non-polar background matrix.

Download full-text PDF

Source
http://dx.doi.org/10.1038/s41565-020-0708-3DOI Listing

Publication Analysis

Top Keywords

moiré superlattices
28
superlattices moiré
8
van der
8
der waals
8
waals heterostructures
8
number emergent
8
superlattices
7
moiré
6
visualization moiré
4
superlattices van
4

Similar Publications

Ultrahigh Exchange Bias Field/Coercive Field Ratio in In Situ Formed Two-Dimensional Magnetic Te-CrO/CrTe Heterostructures.

Adv Mater

January 2025

Hunan Key Laboratory of Two-Dimensional Materials, State Key Laboratory for Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, Hunan, 410082, China.

The exchange bias (EB) effect is a fundamental magnetic phenomenon, in which the exchange bias field/coercive field ratio (|H/H|) can improve the stability of spintronic devices. Two-dimensional (2D) magnetic heterostructures have the potential to construct low-power and high-density spintronic devices, while their typically air unstable and |H/H| lesser, limiting the possibility of applications. Here, 2D CrTe nanosheets have been systematically synthesized with an in situ formed ≈2 nm-thick Te doped CrO layer (Te-CrO) on the upper surface by chemical vapor deposition (CVD) method.

View Article and Find Full Text PDF

Experimental detection of antiferromagnetic order in two-dimensional materials is a challenging task. Identifying multidomain antiferromagnetic textures via the current techniques is even more difficult. Therefore, we investigate the higher-order multipole moments in twisted bilayer MnPSe.

View Article and Find Full Text PDF

Flat Band Generation Through Interlayer Geometric Frustration in Intercalated Transition Metal Dichalcogenides.

Small

January 2025

Institute for Quantum Computing and Department of Electrical and Computer Engineering, University of Waterloo, Waterloo, ON, N2L3G1, Canada.

Electronic flat bands can lead to rich many-body quantum phases by quenching the electron's kinetic energy and enhancing many-body correlation. The reduced bandwidth can be realized by either destructive quantum interference in frustrated lattices, or by generating heavy band folding with avoided band crossing in Moiré superlattices. Here a general approach is proposed to introduce flat bands into widely studied transition metal dichalcogenide (TMD) materials by dilute intercalation.

View Article and Find Full Text PDF

Highly printable, strong, and ductile ordered intermetallic alloy.

Nat Commun

January 2025

Department of Materials Science and Engineering, College of Engineering, City University of Hong Kong, Hong Kong, China.

Ordered intermetallic alloys are renowned for their impressive mechanical, chemical, and physical properties, making them appealing for various fields. However, practical applications of them have long been severely hindered due to their severe brittleness and poor fabricability. It is difficult to fabricate such materials into components with complex geometries through traditional subtractive manufacturing methods.

View Article and Find Full Text PDF

Performance Study of Ultraviolet AlGaN/GaN Light-Emitting Diodes Based on Superlattice Tunneling Junction.

Micromachines (Basel)

December 2024

State Key Discipline Laboratory of Wide Band Gap Semiconductor Technology, Xidian University, Xi'an 710071, China.

In this study, we aim to enhance the internal quantum efficiency (IQE) of AlGaN-based ultraviolet (UV) light-emitting diodes (LEDs) by using the short-period AlGaN/GaN superlattice as a tunnel junction (TJ) to construct polarized structures. We analyze in detail the effect of this polarized TJ on the carrier injection efficiency and investigate the increase in hole and electron density caused by the formation of 2D hole gas (2DHG) and 2D electron gas (2DEG) in the superlattice structure. In addition, a dielectric layer is introduced to evaluate the effect of stress changes on the tunneling probability and current spread in TJ.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!